

便利帳の使い方

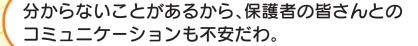
放射線のことって難しく感じるわ。

みんなそう思うよね。今回は僕**にゃん太**が、皆さんが 放射線のことがわかるように手助けするよ。

専門用語とか難しい言葉は苦手だわ。

楽しみながら読んでいけばわかるようになっているよ。

国や行政の考え方を押し付けるの?



この便利帳で勉強をしなくちゃいけないの?

送り迎えのとき、保育士の皆さんに保育園での取り組みのことをいろいろ聞いていいのかしら?

保護者のみなさんも、不安があるのかも しれないね。

この便利帳で、保護者の皆さんと コミュニケーションがしやすくなるよ。 じゃあ、さっそく進んでみよう!

登場人物紹介

工三先生

保育士。 放射線の疑問を にゃん太くんや アオイさんに 質問をするよ。

にやん太くん

放射線の疑問に 答えてくれるよ。

アオイさん

保健師。 にゃん太くんを サポートするよ。

カズくん

保育園に通う元気な 男の子。

ママ

カズのお母さん。

概 要

この冊子は、福島県保健福祉部子育て支援課主催の「ふくしま保育元気アップ緊急支援事業相談支援者育成研修会」に参加された福島県内の保育士の方々からのご質問やご意見に基づき作成されています。

この研修では、放射線の基礎知識を確認するだけではなく、福島県立医大で進めておられる県民健康管理調査への疑問、放射線対策を進める上でも重要なメンタルヘルスや保育士の方々の日々における仕事の意義を再認識していただき、子どもの発達などの学習だけではなく現場で頑張っておられる保健師の方々から頂いたご意見を題材にして、現場の問題を考えるスタイルとしました。放射線のことも大事ですが、難しいのは、保育士同士や保育士と保護者のコミュニケーション問題であることが確認できたと思います。

このため、この冊子ではコミュニケーションの助けになることを目指して編集しました。

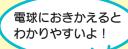
楽しみながらこの冊子を活用してコミュニケーションに役立てていただければと思います。

研修に参加された保育士の方々、準備下さった福島県の方々、協力下さった福島県立医大の方々、国立精神神経センターの金吉晴先生、長崎大学の堀口逸子先生、除染情報プラザの方々、市民科学研究室の上田昌文さん、福島県医師会小児科医会の市川陽子先生、菊池信太郎先生、参加者の心を癒していただいた臨床心理士の成井香苗先生、ユーモアで専門家と会場の橋渡しをしていただいた半谷輝己さんに感謝申し上げます。

また、フォローアップ研修に参加いただいた日本放射線安全管理学会の皆さまや、研修の準備 -----をサポート下さった本院のスタッフにも感謝申し上げます。

国立保健医療科学院 山口 一郎

放射線ってなに?


放射性物質・放射能・放射線ってなにが違うの?

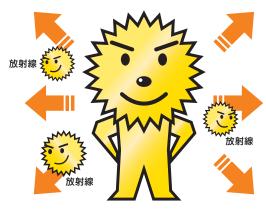
電球に例えて見てみよう!

光や放射線を出すもの

出す力

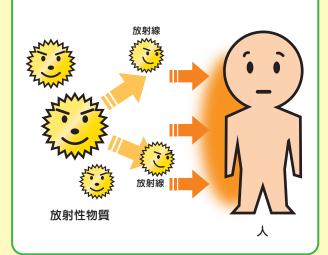
放射能 (放射線を出す力)

放射線(見えない)



ベクレル(Bq)とシーベルト(Sv)ってよく聞くけど、どう違うの?

ベクレル(Bq)


1秒間にどのくらい放射線を出すかを表す単位で、土や食品、水道水などに含まれる放射性物質の量を表すよ。

放射性物質

シーベルト(Sv)

人が受ける放射線量を表すよ。

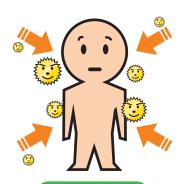
放射性物質ってどんなものがあるの?

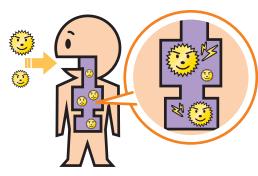
放射性物質の種類

人が作ったもの

両方にあるもの

自然にあるもの




外部被ばくと内部被ばくの違いってなに?

外部被ばくは体の外にある放射性物質から放射線を受ける ことだよ。

内部被ばくは放射性物質が口や鼻などから入ったりして体の中から 放射線を受けることだよ。

外部被ばく

内部被ばく

自然放射線と人工放射線ってなに?

自然放射線は、昔から自然の中にある放射性物質から出て いる放射線のことで、宇宙から飛んでくる放射線や空気・ 大地や食べ物から出ている放射線があるんだ。

人工放射線は、人が作った放射性物質から出ている放射線 のことで、レントゲンやCTスキャン、PET検診などに使 用されているよ。

自然の中にある放射線の種類

(出典)新版 生活環境放射線(国民線量の算定)より

宇宙から 約0.3ミリシーベルト

地面から 約0.3ミリシーベルト

空気から 約0.5ミリシーベルト

食べ物から 約1.0ミリシーベルト

放射線の量を計算してみよう! (参考)サイエンスウィンドゥ「放射線ってなあに?」(科学技術振興機構)より (監修)国立保健医療科学院

たとえば、生まれてから50年間の被ばくは? (mSv:ミリシーベルト)

100 10 1

CTの精密検査 1回で10mSv(検査内容で異なる) 40歳くらいで、精密検査を受けるかも。

10×1回 10_{mSv}

自然からの放射線 1年で2.1mSv

日本の平均値 環境から 1.1mSv(年間) 食品から 1.0mSv(年間)

> 2.1mSv(年間) 合計

2.1×50年 約100mSv

飛行機で移動 東京-ニューヨークの往復で0.2mSv 海外旅行は、大人になってから10回くらい行きたいな。

0.2×10回 約2mSv

定期健診のエックス線 1回で0.05mSv

0.05×25回

25歳から25年間、会社にはいったら定期健診を毎年1回受けるはず。

約1mSv

mSv

0.1

0.01

平成23年の東京電力福島第一原子力発電所の事故による影響は数値に含まれません。

50年間で合計 約110mSv

人が作った放射性物質は危険なイメージがあるけど 自然にある放射性物質は危険じゃないの?

受ける線量が同じであればリスク*1は同じと考えられているよ。 その線量をどのように考えるかは、個人差があるね。

どうして、自然にあるものなのに安全じゃないの?

自然放射線でも、空気中に多くある ラドンを吸い込む ことによる内部被ばくがあるんだよ。

自然にあるものでも、人工のものでも受ける線量が大きく なるとリスク*1は高くなるんだ。

※1:放射線が人や物に与える影響

大地・海にある 放射性物質で多

大地

運1位 カリウム40:400 Bq/kg

海

買り カリウム40:11 Bq/L

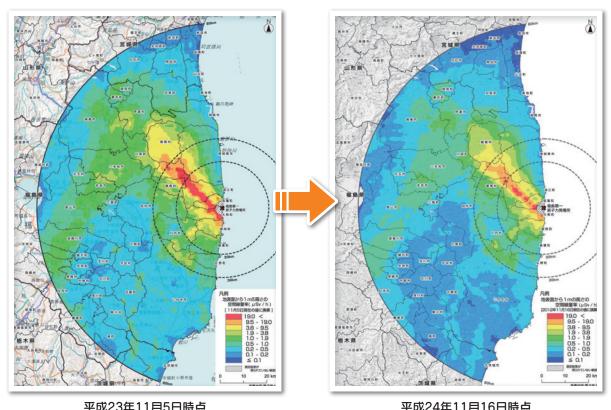
第2回 ルビジウム87:1.1 Bq/L

ララン:33 mBq/L

この他にも大地では、ウラン(25Bq/kg)、ラドン(10kBq/m³) があるよ。海では、炭素14(5mBg/L)、トリチウム(0.6mBg/L) が多くあるんだよ。

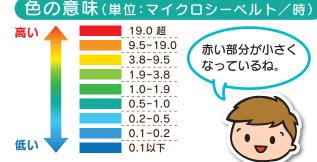
(出典)アイダホ大学「Radioactivity in Nature」より

今は、どうなっているの?


福島原発事故当時から現在まで、放射性物質はどう広がったの?

事故当時と現在のモニタリングマップを見てみよう。

空間線量率を比べてみよう!


(出典)調べてなっとくノートより

事故当時は、放射性物質を含んだ雲が南南東の風で流れているときに雨が 降ったから北北西の方向を中心に広がっていったよ。

平成23年11月5日時点

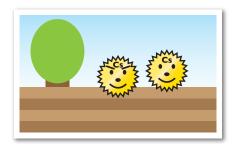
平成24年11月16日時点

1Sv(シーベルト) 1000mSv (ミリシーベルト) 1,000,000µSv (マイクロシーベルト)

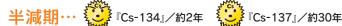
どんな放射性物質が放出されて、今はどうなっているの?

放射性の希ガス

(Kr-85·Xe-133)



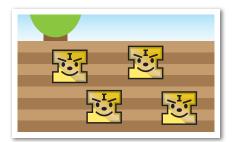
福島原発から出た量は 多かったけど、体の中に 入り込んだり、地面など にくっつかないから、 線量を与えた時間は 短かったんだ。



放射性セシウム

(Cs-134·Cs-137)

セシウムは雨が降って地表に沈着したんだ。 粘土系の土壌についたセシウムは水に溶けだ しにくい性質があるんだよ。雨が降っても残 るから、除染のために地表を削ぎとって土壌 ごと除去しているんだ。



放射性ヨウ素

(I-131)

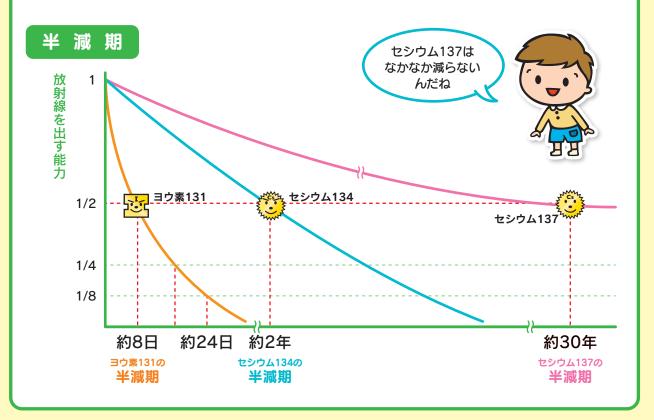
ヨウ素は放出の後、風に乗って浮遊し、雨と共 に水に溶けて地表に落ちてから、水道水に 混入したり川から海へ運ばれていったんだよ。 半減期は、約8日間だから3ヶ月後にはほとん どなくなっていたんだよ。

半減期… 📴 『I-131』/約8日

「半減期」ってなに?

放射能は時間と共に減っていく性質があるんだよ。その 半分になるまでの期間を「半減期」っていうんだ。

環境中にある放射性物質は、半減期だけじゃなくて風や 雨の影響をうけて減っていくんだ。


8ページのモニタリングマップを見てみると、1年で約半分近く減ってることがわかるよね。

半減期って何年くらい?

(出典)調べてなっとくノートより

放射性物質 ョウ素131 半減期 約8日 約2年 約30年

福島原発事故で子どもたちの被ばく線量はどのようになっているの?

福島県では、原発事故が起きた年(2011年度)から市町村によって、子どもや妊婦を中心として個人線量計(ガラス線量計など)で被ばく線量を把握してるんだ。

個人線量計による外部被ばく線量測定結果 (2012年度)

(出典)復興庁[放射線リスクに関する基礎的情報]より

	測定期間	対 象	測定数	年間個人線量(平均)[ミリシーベルト]※1
	2012年7月~9月	乳幼児から中学生・妊婦	4,135	0.4
\F \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2012年6月~8月	18歳以下、妊婦の希望者(県内居住)	3,265	0.7
浜通り	2012年9月~11月	18歳以下、妊婦の希望者(県内居住)	3,225	0.7
	2012年9月~11月	中学生以下	439	0.1
	2012年11月~2013年1月	中学生以下	16,223	0.6
T 12 11	2012年5月~7月	未就学児童	7,847	1.0
中通り	2012年7月~9月	未就学児童	11,450	0.7
	2012年9月~11月	未就学児童	11,429	0.6
	2012年7月~9月	中学生以下	4,781	0.2
会津地方	2012年6月~9月	中学生以下、妊婦	745	0.1
	2012年9月~12月	中学生以下、妊婦、一般希望者	1,306	0.1

※1: 測定値を単純に年換算。バックグランドは除く。

2013年度の測定結果では、年間個人線量の最大値は1.2mSvだったよ。平均では0.11mSvだね。

福島市では、中学生以下の子どもたちを対象に平成25年9月~平成25年11月までの測定結果で、10,100人のうち、99%の人が0.5mSvだったんだよ。

人数(人)	割合(%)
2,275	22.5
7,759	76.8
63	0.6
3	0.03
0	0
10,100	100
	2,275 7,759 63 3 0

(出典)福島市役所HPより

福島市健康管理検討委員会というところで、測定結果を検討して「将来、放射線によるガンの増加などの可能性は少ない」と判断したんだ。

子どもたちの甲状腺にはどう影響しているの?

甲状腺については、原発事故当時から現在まで検査や調査が行われています。現地原子力災害対策本部では、小児への健康影響を把握するため事故直後に小児甲状腺スクリーニング調査を実施しました。

SPEEDIを活用した試算結果

(出典)復興庁「放射線リスクに関する基礎的情報」より

内部被ばくによる臓器の等価線量

日 時:2011/03/12 06:00 ~

2011/03/24 00:00の積算値

領 域:92km×92km

核 種 名:ヨウ素合計

対象年齢:1歳児 臓器:甲状腺

凡例

5:

線量等値線[ミリシーベルト]

100 -----

2011年3月24日~30日にかけて、いわき市・川俣町・飯舘村において小児を対象に甲状腺の簡易測定を行ったところ、調査対象となった1080人が、原子力安全委員会がスクリーニングレベル*1としている毎時0.2マイクロシーベルトを下回っていたよ。

※1: スクリーニングレベルとは、放射性ヨウ素による甲状腺等価線量が100mSvを超えない値のことを言います。

甲状腺に集まりやすいヨウ素131は半減期が8日なので早期に消失しています。現在でも初期の被ばく線量の再評価がされています。例えばヨウ素129などの計測をしています。

※1:2013年12月31日時点 受診者数269,354人 福島県では、「県民健康管理調査」で震災時に18歳以下であった全県民を対象に、超音波を使った精度の高い甲状腺検査を順次実施しています。*1

甲状腺検査の結果(2013年11月15日検査分まで)

(出典)復興庁「放射線リスクに関する基礎的情報」より

判定結果		判定内容	人数(人)	割合(%)		
A 判 定 / · · ·		結節やのう胞を認めなかったもの	134,805	53.0	99.3	
		5.0mm以下の結節や20.0mm以下ののう胞を認めたもの	117,679	46.3		
B判定		5.1mm以上の結節や20.1mm以上ののう胞を認めたもの	1,795	0.7		
C判定		甲状腺の状態等から判断して、直ちに二次検査を要するもの	1	0.0004		
		結果確定数	254,280	10	0	

[判定結果の説明]

- ●A1、A2判定は次回(2014年以降)の検査まで経過観察
- ●B、C判定は二次検査(二次検査対象者に対しては、二次検査日時、場所を改めて通知して実施)
 ※A2の判定内容であっても、甲状腺の状態等から二次検査を要すると判断した方については、B判定としています。

検査結果でA1判定だった人数は53%で、半分近くの人に 所見があったのは福島県だけなの?

環境省が実施主体となって、福島県外の3県で同様の検査をしたところ、結果にほぼ違いはなく原発事故との関係性は小さいと考えられてます。

福島県外3県における甲状腺有所見率調査結果

(出典)復興庁「放射線リスクに関する基礎的情報」より

[2012年12月~2013年3月に実施]		青森県(弘前市)		山梨県(甲府市)			長崎県(長崎市)						
判定結果		人数	(人)	割合(%)		人数(人)		割合(%)		人数(人)		割合	(%)
A 判 定	A1	670	1,609	41.1	98.7	404	1,351	29.6	98.9	779	1,361	56.9	99.4
A刊处	A2	939	1,609	57.6	90.1	947	69.3	30.3	582	1,301	42.5	33.4	
B判定		2	1	1.	3	1	5	1.	.1	3	3	0	.6
C判定		C)	0.0		()	0	.0	()	0	.0
計		1,6	30	10	00	1,3	366	10	00	1,3	369	10	00

調査でがんが見つかったと聞いて心配だわ。

甲状腺への線量が大きくなく、発見された子どもの年齢分布からも、原発事故との関係性は小さいと考えられてますが、 調査を行うことで心配が増えるのも難しいところです。

僕、<mark>牛乳</mark>大好き! たくさん 飲みたいな! そういえば、 子どもたちがよく飲む 「**牛乳**」って 安全なのかしら?

事故当時は、水道水よりも牛乳の方が放射性セシウムの濃度が高いと言われた事もあるよね。

牛乳がどのように皆さんのもとへ届けられているか見てみよう。

皆さんの元へ届くまで…

(出典)社団法人 福島県牛乳協会より

安全なえさと水を与えられた健康な牛から 原乳が搾られます。

県内全ての酪農家から運ばれた原乳は、県内集乳所(CS)*1や乳業工場に集められます。 *1: CS(クーラーステーション)とは、乳業場へ送られる前に ー時的に貯留し、冷却する施設のことを言います。

全ての酪農家から運ばれた原乳を対象に、毎週1回定期的に放射線物質について検査し、安全性を確認します。

原発事故以降、これまで県内の酪農家から出荷された 原乳は全て安全性が確認されています。

牛乳・乳製品は安全な 原乳でつくられています。

生産者の皆さんの 努力もあって、安全な 牛乳が皆さんに届け られているよ。

検査場所 福島県原子カセンター 福島支部

食品の放射性物質の基準ってあるの?

食品からの内部被ばくを防ぐために、厚生労働省が設定した 基準値というものがあるよ。平成23年3月17日から暫定規制 値を設定して、数値を上回る食品が市場に流通しないように 出荷制限などの措置を取ってきたんだ。

状況が改善してきたので、平成24年4月1日からは、新たな 基準値が設定されたんだよ。

何が変わったか見てみよう。

新たな基準値の概要

(出典)厚生労働省HPより

放射性物質を含む食品からの被ばく線量の上限を、年間5ミリシーベルトから年間1ミリシーベルトに引き下げ、これをもとに放射性セシウムの基準値を設定しました。

放射性セシウムの暫定規制値

食品群	規制値 (単位:ベクレル/kg)		
野菜類			
穀類	500		
肉・卵・魚・その他			
牛乳·乳製品	200		
飲料水	200		

※放射性ストロンチウムを含めて規制値を設定

食品群

- ●食品の区分で子どもに配慮 ●年間線量の上限を引き下げ
- 1

規制値

放射性セシウムの新基準値

年乳は1/4まで規制値が 引き下げられていることが わかるね!

жинит	(単位:ベクレル/kg)
一般食品	100
乳児用食品	50
牛乳	50
飲料水	10

※放射性ストロンチウム、プルトニウムなどを含めて基準値を設定

新たな基準値はどのように決められたの?

新たな基準値では、「一般食品」、乳児だけが食べる「乳児用食品」、 子どもの摂取量が多い「牛乳」、全ての人が摂取する「飲料水」と区分 を分けて設定されました。表を見ながら説明しましょう。

新たな基準値設定の考え方

(出典)厚生労働省HPより

年間の線量の上限値1ミリシーベルトから、飲料水に割り当てる線量(約0.1ミリシーベルト)を引き、残りの線量を一般食品(乳児用食品、牛乳を含む)に割り当てます。

食品からの線量の上限値

1ミリシーベルト/年

★飲料水の線量(約0.1ミリシーベルト)を引く

一般食品に割り当てる 線量を決定

年齢区分	性別	限度値(ベクレル/kg)
1歳未満	男女	460
1 选 6 选	男	310
1歳~6歳	女	320
7歳~12歳	男	190
7 成~ 1 乙成	女	210
13歳~18歳	男	120
1.3/成~10/成	女	150
19歳以上	男	130
「日成以入土	女	160
妊婦	女	160
	最小値	120

各年齢層ごとに、通常の食生活を送れば、 年間線量の上限値を下回る水準に設定。

100ベクレル/kgに基準値を設定

★すべての年齢区分の限度値のうち最も小さい値(120)を下回る数値に設定

乳児用食品の範囲

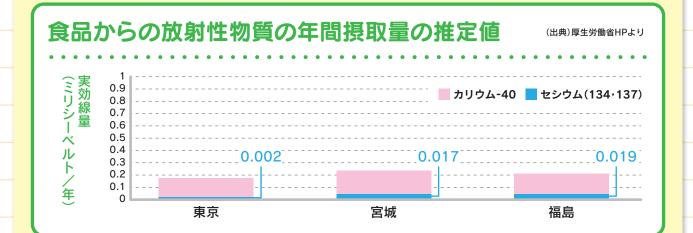
- ●乳児用調製粉乳
- ●乳幼児を対象とした調製粉乳 (フォローアップミルクなどの粉ミルクを含む)
- ●乳幼児向け飲料 (飲用茶に該当する飲料は飲料水の基準を適用)
- ●乳幼児用食品(おやつなど) ●ベビーフード
- ●その他(服薬補助ゼリー・栄養食品など)
- ●表示内容により、乳児向けの食品と認識される ものは、「乳児用食品」の区分に含みます。

牛乳の範囲

- ●「牛乳」の区分に含む食品 (牛乳・低脂肪乳・加工乳等・乳飲料)
- ●「一般食品」の区分に含む食品 (乳酸菌飲料・発酵乳・チーズ)
- ●消費者から牛乳と同類の商品と認識されている 乳飲料(牛乳や加工乳にビタミン類やミネラル類 を添加したもの)は、「牛乳」の区分に含みます。
- ●乳酸菌飲料、ヨーグルトなどの発酵乳、チーズなどは「一般食品」の区分に含みます。

セシウム以外の放射性物質は対象にしてないの?

今回の新たな基準値では、福島原発事故で放出された主な放射性物質のうち、半減期が1年以上の放射性核種(セシウム134、セシウム137、ストロンチウム90、プルトニウム、ルテニウム106)を考慮しています。



実際には、食品からどのくらい被ばくしているの?

平成23年9月と11月に東京都、宮城県、福島県で実際に流通している食品を調査・推計したところ、今後の食品からの放射性セシウムによる被ばく線量は年間に換算して0.002~0.02mSv程度(下図のピンク色部分)でした。これは、自然界に存在する放射性カリウムによる被ばく線量0.2mSv(下図の青色部分)程度と比べても小さい値です。

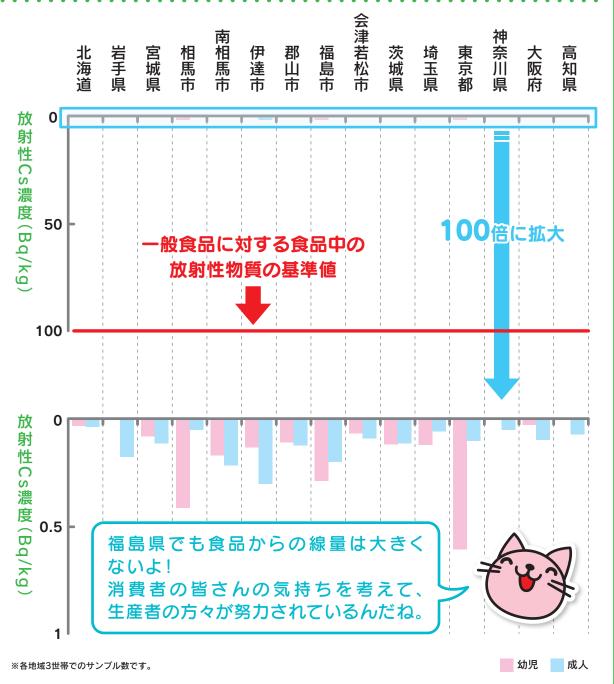
お肉とか加工食品は大丈夫なの?

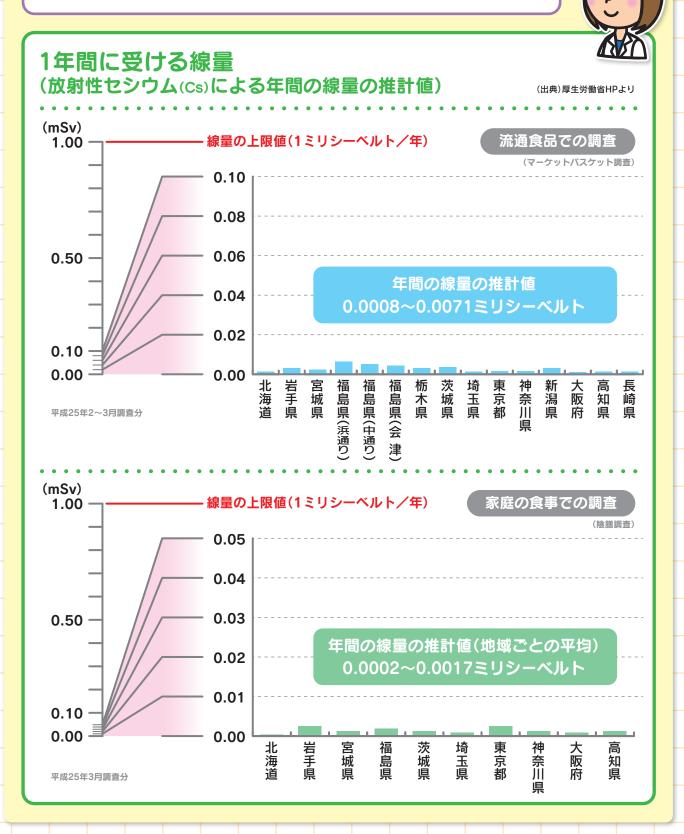
平成24年4月1日以降に出荷する原料(生鮮食品など)、平成24年4月1日以降に製造、加工、輸入された食品に新たな基準値が適用されています。

食品中の放射性物質の新たな基準値について (出典)政府広報オンラインより 2012年 4月 10月 1月 3月 原料 暫定規制値 製造・加工食品の 哲定規制値(賞味期限まで) 3月31日までに製造、加工、輸入された食品 経過措置 4月1日以降、製造、加工、輸入された食品 経過措置の対象と食品 暫定規制値(9月30日まで経過措置) 9月30日までに製造、加工、輸入された食品 暫定規制値(賞味期限まで) 米·牛肉 米・牛肉を原料に製造・加工、 10月1日以降に製造、加工、輸入された食品 新基準値 輸入された食品の経過措置 暫定規制値(12月31日まで経過措置) 12月31日までに製造、加工、輸入された食品 暫定規制値(賞味期限まで) 大豆を原料に製造・加工、 1月1日以降に製造、加工、輸入された食品 輸入された食品の経過措置

お魚は大丈夫?

高い濃度のものもありますが、市場に流通している 魚からは基準値を超える値は検出されていません。 例えば回遊魚のサンマを見てみましょう。

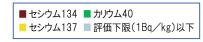


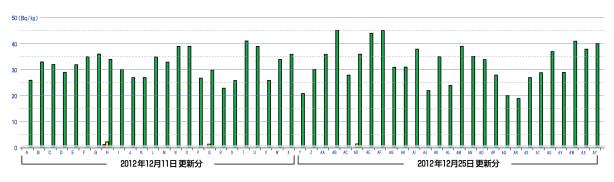

福島県と他の地域で食べられる食品の放射性セシウム濃度は違うの?

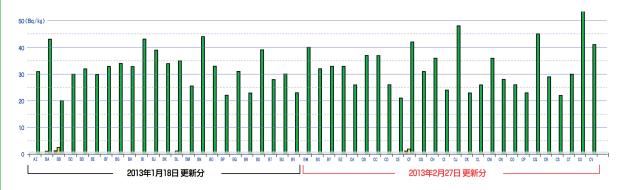
まず食品中の放射性セシウム濃度を地域別に見てみましょう。

日常摂取する食品中の放射性セシウム(Cs)濃度の 地域別平均値 (出典)保健医療科学院より

他にも、厚生労働省では実際に流通する食品を収集して行う調査(マーケットバスケット調査)や一般家庭で調理された食事を収集して行う調査(陰膳調査)を定期的に実施し、一年間に受ける線量を推計した結果などをとりまとめています。

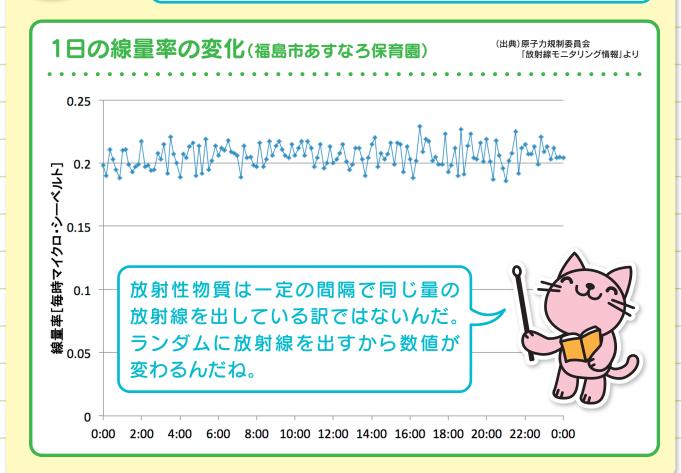

たができた。 陰膳調査だと、福島県産の食材があまり入っていないんじゃないの?


コープふくしまの陰膳調査を見てみましょう。



陰膳方式放射能量調査結果(2013.2.27更新)

(出典)コープふくしまHPより


福島県内の家庭でもほとんどが検出限界未満となっています(100家庭中、1キログラムあたり1ベクレル以上のセシウムが検出されたのは7家庭)。ご協力いただいた家庭では福島県産のみを食べているとは限りませんが、100家庭中9割以上のご家庭で福島県産の食材をご使用されていました。

線量率が変動するのは、空気中の放射性物質が増えたり減ったりしているからではないんだよ。一日の放射線量の変動を見てみよう。

0

1/26

1/31

2/5

2/10

日付(2014年)

2/15

雨や雪の時も数値が変わるわよね?

そうなんだ!それじゃあ下のグラフを見てみよう。

2/20

2/25

モニタリングポストのことはわかったけど、外遊びを したあとに気をつけることはあるの?

いつもの生活で気をつけていることが大切なんだ。

生活習慣で心がけたいこと

(出典)福島市役所HPより

- 1 外から帰ったら手洗い・うがいをしましょう。
- 2 玄関に入る前に、靴についた泥や土を落としましょう。
- **3**砂ほこりがまうような風の強い日には、窓を開けないようにしましょう。
- ☑ 室内の掃除をこまめにしましょう。床や窓、窓わくなどを水拭きしましょう。 (拭くときは、一方向で拭くようにしましょう)
- **5** 校庭や砂場でけがをした時は、傷口を水で洗いましょう。
- **6** 雨の日は、ぬれないように雨具を使いましょう。

園児が転んだ場合はどうしたらいいのかしら?

通常の衛生上の配慮で十分です。少し難しい話ですが、数値を参考例に見てみましょう。

体に土が付いた場合の線量

(出典)国立保健医療科学院より

土のCs-137濃度を約5000[Bq/kg]と仮定した場合は、この土が200mg胸に付いたとすると、体が受ける線量率は毎時0.00001マイクロシーベルト程度です。すぐに洗うことで減らせる線量は大きくありません。

でも怪我をしたら、きちんと手当をしようね!

保育園の外に散歩に行ってもいいのかしら?

郡山市で実際に散歩コースの放射線量を計測したマップを見てみよう。

空間放射線量率の計測結果

(出典)河内邦夫先生(室蘭工科大学)郡山3a!より

自転車にシンチレーションサーベイメータTCS-172Bを搭載し位置情報をGPS装置で記録し調査した開成山公園の空間放射線量率の計測結果

【計測期間:2013/3/19~3/20 計測高:1.0m】

継続して測定しています

除染情報プラザや専門家に相談されても よいと思います。

除染作業の状況をみて散歩のコースを考えて みてはどうかな。

散歩中や外遊びのときに、自然にあるものに触れさせても よいのかしら?

マツカサを例に挙げてみましょう。判断の参考にしてください。

マツカサに触ってもいいの?

(出典)国立保健医療科学院より

触っても線量は小さいです。

放射線量計測器で計測したところ1分間に120 カウント*1でした。マツカサにはまだ比較的高い 濃度の放射性セシウムが含まれていることが あります。しかし、濃度が高くても、触れる量が 少なければ線量は小さいです。

例えば、10Bqあったとしても、手に持った場合の実効線量は目安として、毎時0.000015マイクロシーベルト程度だよ。

※1:計測器はGM計数管式で、1分間当たりの放射線の 数を調べます。

幼稚園での保護者と共に行ったモニタリング

他の保育施設は、放射線に関してどんなことをしているのかしら?

福島市にある保育園の除染例を見てみよう。

あすなろ保育園の場合

(提供)あすなろ保育園より

除染前

※遊具は除染作業の妨げ になるため撤去

> これで友達と いっぱい遊べるね!

表土を削ぎとり除染

除染後

※新たに複合遊具を設置

キノコとか山菜は自生 しているものを採って 食べる方もいますよね。 大丈夫かしら?

先生、うちの おじいちゃんが、昨日 採ってきた**キノコ**を、カズが 一緒に食べたいって… 困ったわ。

15ページで「食品の基準値」を取り上げたのは覚えてるかな?

覚えてるわ!たしか一般食品は100ベクレル/kgよね?

PP~1

そのとおりだよ。じゃあ、何ベクレル食べると年間の線量 上限値1mSvになるかわかるかな?

ん~難しいわ。

年齢ごとに分けた表を 見てみよう。

何ベクレル食べたら1ミリシーベルト?

(出典)国立保健医療科学院より

年齢区分	1ミリシーベルト になるベクレル
3ヶ月児	4万8千
1歳児	8万3千
3歳児	10万
10歳児	10万
15歳児	7万7千
成人	7万7千

セシウム137 (半減期が30年)の場合

> 放射性セシウム としてCs-134と Cs-137は3:7の割合 (2014年1月)なので、 7万6千ベクレル食べて 1ミリシーベルト になります。

福島県では、自生のキノコに関して出荷制限されている自治体は、摂取も控えるようにお願いしているよ。

自治体の測定データでは、1キロベクレル/kg*1のものもあったようです。この場合だと、1日50g食べると50ベクレルになります。

※1:1キロベクレル=1000ベクレル

本宫市岩根地区

(参考)本宮市「農産物の放射性物質検査結果(岩根地区)10月」より

農産物の品名	測定結果 (ベクレル/kg)					
長性物の即位	セシウム134	セシウム137	セシウム合計			
キノコ(イクジ)	159	357	516			
キノコ(イクジ)	37	69	106			
キノコ(イクジ)	363	714	1077			

相馬郡新地町

(参考)福島県新地町役場HP「スクリーニング検査結果:その他」より

- 4	測定結果 (ベクレル/kg)					
品名	セシウム134	セシウム137	セシウム合計			
キノコ(イノハナ)	259	644	903			
キノコ(イノハナ)	281	726	1007			
キノコ(イノハナ)	218	522	740			
キノコ(イノハナ)	12	29	41			

おじいちゃんは山菜も好きだけど、線量を落とすために何かできないかしら?

調理法を工夫するということも考えられます。 アク抜きでセシウムが減らせるみたいです。

調理加工で葉菜類が吸収した放射性セシウム(Cs)の除去割合

(出典)公益財団法人 原子力環境整備促進・資金管理センターより

材料	調理加工	除去割合(%)	残存割合(%)			
			平 均	最 小	最大	
ヨモギ	5回貯水洗浄	13	87	84	89	
	洗浄後ゆで※2	60	40	34	45	
食用野草	5回貯水洗浄	8	92	79	110	
	洗浄後ゆで※2	59	41	31	51	

※2: 貯水洗浄を5回行った後、ゆで時間は2.5分程度。洗浄前に対する除去割合。

地域の食文化を大切にしていくためにも、セシウムを減らす 調理法を研究者と一緒に探していくことも良いわね。 同時に食べることに抵抗がある人の気持ちも大事にして いきたいわ。

コラムコーナー

国立保健医療科学院スタッフのコラムを紹介するよ!

災害保健研究者の立場から

奥田 博子

このたびの災害・事故により日常が一変し、3年が経過しました。

事故後から出会わせていただいた県下の保育士さんから、「自然とかかわる体験の減少」、「子どもにふさわしい生活時間やリズム確保が困難」、「飲料水や食材の不安」、「悩みを抱える保護者の増加」等、日々の保育を通じ当惑する事象の山積であることをうかがいました。子どもの健やかな成長のために、新たな学びの必要性、対応の工夫に邁進され、子どもや保護者の立場に立って、最善策を探ろうと、研修会をはじめ様々な機会に積極的に出向き、保育へ反映させる工夫を続けているみなさまのご尽力にこころから敬服をいたします。

この3年間が長かったと感じる方、あっという間だったと感じられる方、様々であるように、非日常の出来事から不安、怒り、悲しみ等を体験された人にとって、その和らぎが得られるには、時間、具体的変化、支え(人、物、方策)など、影響をもたらす要因も人により多様です。

日々、お子さんの成長過程に寄り添う立場の保育士の皆さん自身が、安心して保育に従事していただけることが、子どもさんや保護者の方の安心にもつながります。その保育士さんの方々のバックアップとなるのが専門家の存在です。国内でも前例のない出来事の中、保育に邁進されるみなさんのご苦労に少しでもお役に立てることを考え続けてまいりたいと思います。

放射線生物学研究者の立場から

志村

ヒトの放射線影響は、広島、長崎原爆被爆者、チェルノブイリ事故被災者、高自然放射線地域の住民の疫学調査によって解析されています。しかし、福島第一原子力発電所の事故で問題となる低線量・低線量率の放射線による人への影響については疫学単独での評価が難しく、放射線影響を理解するために実験動物や培養細胞を用いた実験研究により検討されてきました。事故当初は、科学的知見がどのようなメッセージとしてとらえられるのかの十分な配慮がなく、放射線に対する不安を引き起こしたことは大変残念なことです。DNA、細胞、組織、個体レベルと様々な段階での研究成果が人の放射線影響を考える上でどのような意味を持つのか、また研究者間で共通の認識として確立されていることなのかどうかを考慮して説明することが大切です。これまでも多くの研究者が放射線の生物への影響を解明するために研究を行ってきました。原発事故後には、研究者間の情報共有をさらに強化し、低線量放射線影響の解明に取り組んでいます。私は放射線影響研究に従事する研究者の一員として研究や支援活動を通して、今後も福島復興に貢献したいと思います。

もっと放射線のことについて情報を集めたいときは どうしたらいいのかしら?

今は放射線に関する情報はいろいろなところから 集められるよね。いくつか紹介するよ。

ホームページ

国立保健医療科学院HP

https://www.niph.go.jp/

除染情報プラザHP

http://josen-plaza.env.go.jp/

保健福祉職員向け原子力災害後の放射線学習サイト

2014年5月より公開予定

テキスト

調べてなっとくノート

除染情報プラザ

新しい放射線副読本

文部科学省

放射線リスクに関する 基礎的情報

復興庁

インターネットで検索してみよう!

国立保健医療科学院 生活環境研究部

〒351-0197 埼玉県和光市南 2-3-6 TEL 048-458-6111 FAX 048-469-1573 http://www.niph.go.jp/