新生児感染症の迅速診断法の確立に関する研究

名古屋市立城北病院小児科

後 藤 玄 夫

研究目的

APR-Sc (Acute phase reactants score)の新生児感染症に対する信憑性は高く、臨床的にその有効性が確認されつつある。しかし、このAPR-Sc についても次のような問題点があげられる。

- 1) 血聚中のAPR (Acute phase reactants)は、 感染手術侵襲などに反応して有意の上昇を示すが、 その上昇がみられるまでには一定の Response time が必要である。(CRP 6~10時間、 α_1 AG お よび Hp 24時間)
- 2) 極小・超未熟児の早発型敗血症では Response time は更におくれる傾向がある。
- 3) 生後24時間以内に発症する早発型敗血症では APR-Sc は False negative になることがある。
- 4) APR-Sc の測定は Immunoplateを使用するので、成績判定が翌日になり緊急時の要求に応じられない。

これらの問題のうち、4)の問題の解決のため Latex 凝集を利用した APR-Sc の迅速判定法を 検討した。

方法および材料

1) 試薬 APR-Sc 測定用ラテックスキット(医学生物学研究所)を使用した。

キットの内容

1 7 1 12 17		
	CRP感作ラテックス	
感作ラテックス	αı AG 感作ラテックス	
	Hp 感作ラテックス	
前処理用抗血清	α ₁ AG定性用 (30 mg / dℓ)	
	α ₁ AG定性用(40 mg / dℓ)	
	α ₁ AG定性用 (50 mg / dℓ)	
	Hp 定性用(20 mg / dℓ)	
	Hp 定性用 (50 mg / dℓ)	
	Hp 定性用(100 mg /dl)	
検体希釈液		

2) 操作手順

a) 検体の調整

検体血漿 0.01 ml に希釈液 0.09 ml を加え, 検体を10倍に希釈する。

b) 検体の前処理および反応

下表に従って各検体に供する前処理用抗血清を 選ぶ。CRPには本操作不要。

前処理用血清	成熟児	未熟児
α ₁ AG定性用(30mg/dℓ)	0 ~ 24h.	0~72h.
$\alpha_1 AG$ 定性用(40mg/ $d\ell$)		72h. 以上
α_1 AG定性用(50mg/ $d\ell$)	24h. 以上	
Hp 定性用 (20 mg / dl)	0 ~24h.	0~72h.
Hp 定性用(50mg/dl)	24~48h. 7d. 以上	72h.以上
Hp 定性用 (100 mg/dℓ)	48h.∼7d.	

調整検体 5 μg をテストスライド上に 2 箇所滴下する。

 $lpha_1$ AG および Hp の前処理用抗血清のどちらか 一方を夫々 1 滴滴下する。

検体と前処理用抗血清をかくはん棒でよくかく はんしたのち、1分間静置反応させる。

CRP については調整検体50 μℓをテストスライド上に滴下し、かくはん棒で枠一杯に検体を広げる。

前処理した α_1 AG, Hp および CRP の検体上に、対応する感作ラテックスを 1 滴滴下する。

テストスライド上のリング内でよくよう動させ, よう動開始後2分後に凝集の有無を観察し判定す る。

3) 判定

測定項目	前処理抗血清	判 陰性	定 陽 性
CRP		1 mg/dℓ↓	1 mg/dℓ↑
α ₁ AG	α ₁ AG 定性用 (30 mg / dℓ) を用いたとき	30mg/dℓ↓	30mg∕dℓ↑
	α ₁ AG 定性用(40 mg / dℓ)を用いたとき	40mg/dℓ↓	$40 \mathrm{mg}/d\ell \uparrow$
	α ₁ AG 定性用(50 mg / dℓ)を用いたとき	50mg/dℓ↓	50mg/dℓ↑
Нр	Hp 定性用(20mg/dl)を用いたとき	20mg/dℓ↓	20mg∕dℓ↑
	Hp 定性用(50呱/dl)を用いたとき	50mg/dℓ↓	50mg∕dℓ↑
	Hp 定性用(100 mg/dl)を用いたとき	100 mg ∕ dℓ ↓	100 mg ∕dℓ ↑

凝集を認めたとき陽性と判定

↓以下 ↑以上

結 果

各種臨床検体 150 検体について α_1 AG, Hp, および CRP のラテックス凝集を検査した。

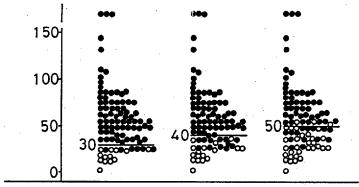
1) α₁ AG について

調整検体 $5\mu\ell$ をテストスライド上に 3箇所滴下し、それぞれ 30 $mg/d\ell$,40 $mg/d\ell$ および 50 $mg/d\ell$ の前処理用抗血清を滴下した後, α_1 AG 感作ラテックスを滴下したときの判定を図 1 に示した。

前処理用抗血清で Cut off した Level 以下では 陰性、それ以上では陽性であったが、Cut off level に近いところで α_1 AG 濃度と Latex との不一 致がみられるが、ほぼ満足出来るものであった。 (図 2)

2) Hp について

調整検体 $5 \mu \ell$ をテストスライド上に 3 箇所滴下し、それぞれ $20 \text{ mg}/d\ell$, $50 \text{ mg}/d\ell$, および $100 \text{ mg}/d\ell$ の前処理用抗血清を滴下した後,Hp 感作 ラテックスを滴下したときの判定を図 3 に示した。


前処理用抗血清で Cut off した Level以下では 陰性,それ以上では陽性であったが,Cut off に 近いところで Hp 濃度と Latex との不一致がみられた。(図 4)

α₁AGに比して不一致の中が広く, その要因に ついて更に検討をつづけてみたい。

3) CRP について

血漿中濃度が1 mg/ $d\ell$ を超えるものではLatex 凝集は陽性、1 mg/ $d\ell$ 以下では陰性を示し、満足できる成績が得られた。

Latex Estimation of & Acid Glycopotein After Cutoff in Respective Levels

- Latex positive
- Latex negative

図 1. α₁ AGの血漿中濃度と前処理用抗血清添加後の ラテックス凝集の有無

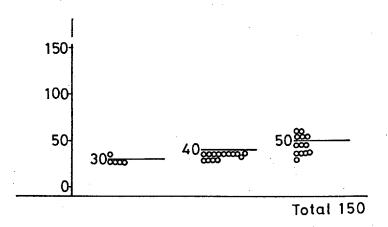
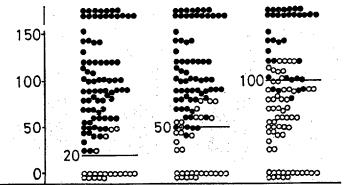



図2. α_1 AG濃度とLatex 凝集の不一致

Latex Estimation of Haptoglobin After Cutoff in Respective Levels

- Latex positive
- Latex negative

図3. Hpの血漿中濃度と前処理抗血清添加後のラテッ クス凝集の有無

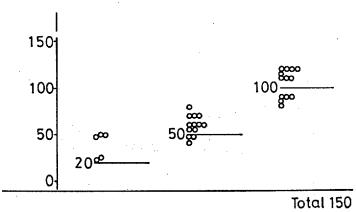


図4. Hp濃度とLatex凝集の不一致

検索用テキスト OCR(光学的文字認識)ソフト使用 論文の一部ですが、認識率の関係で誤字が含まれる場合があります

研究目的

APR-Sc(Acute phase reactants score)の新生児感染症に対する信憑性は高く,臨床的にその有効性が確認されつつある。しかし,この APR-Sc についても次のような問題点があげられる。

- 1) 血漿中の APR(Acute phase reactants) は,感染手術侵襲などに反応して有意の上昇を示すが,その上昇がみられるまでには一定の Response time が必要である。(CRP6 ~ 10 時間,
 - 1 AG および Hp24 時間)
 - 2)極小・超未熟児の早発型敗血症では Response time は更におくれる傾向がある。
- 3)生後 24 時間以内に発症する早発型敗血症では APR-Sc は False negative になることがある。
- 4)APR-Sc の測定は Immunoplate を使用するので,成績判定が翌日になり緊急時の要求に応じられない。

これらの問題のうち,4)の問題の解決のため Latex 凝集を利用した APR-Sc の迅速判定法を検討した。