農薬評価書

1-メチルシクロプロペン

(第3版)

令和5年(2023年)5月 食品安全委員会

目 次

		頁
0	審議の経緯	. 3
0	食品安全委員会委員名簿	. 4
0	食品安全委員会農薬専門調査会専門委員名簿	. 5
0	食品安全委員会農薬第三専門調査会専門委員名簿	. 7
0	要 約	. 9
	シャラ は ない 原本 の 原 西	10
1.	. 評価対象農薬の概要	
	1. 用途	
	3. 化学名	
	4. 分子式	
	5. 分子量	
	6. 構造式	
	7. 物理的化学的性状	
	8. 開発の経緯	11
Π.	. 安全性に係る試験の概要	12
	1. 水中動態試験	12
	(1)加水分解試験	12
	2. 大気中光分解試験	12
	3. 植物、家畜等における代謝及び残留試験	12
	(1)植物代謝試験	12
	(2)作物残留試験	15
	(3)推定摂取量	16
	4. 動物体内動態試験	16
	(1)ラット(経口投与)	16
	5. 急性毒性試験等	20
	(1)急性毒性試験(経口投与)	20
	(2) 一般薬理試験	20
	6. 亜急性毒性試験	
	(1)90日間亜急性毒性試験(ラット)	21
	(2) 90 日間亜急性毒性試験 (イヌ)	22
	7. 生殖発生毒性試験	
	(1) 2世代繁殖試験(ラット)	
	(2) 発生毒性試験 (ラット)	
	8. 遺伝毒性試験	

9. 経皮投与、吸入ばく露等試験	 25
(1)動物体内動態試験(ラット)(吸入ばく露)	 25
(2)急性毒性試験	 27
(3)眼・皮膚に対する刺激性及び皮膚感作性試験	 27
(4) 90 日間亜急性吸入毒性試験(ラット)	 27
1 0. 海外における評価	 29
(1) EPA	 29
(2) EFSA	 29
(3) HC	 29
(4) APVMA	 30
Ⅲ. 食品健康影響評価	 31
- 別紙1:代謝物/分解物略称	 36
- 別紙2:検査値等略称	 37
別紙3:作物残留試験成績(国内)	 38
別紙4:作物残留試験成績(国内)	 39
別紙5:作物残留試験成績(海外)	 41
- 参照	 42

<審議の経緯>

- 一第1版関係一
 - 2005 年 8月 12日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準設定依頼(新規:りんご、なし及びかき)
- 2005年 8月 23日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発食安第0823002 号)
- 2005年 8月 25日 関係書類の接受 (参照 1~22)
- 2005年 9月 1日 第109回食品安全委員会(要請事項説明)
- 2005年 11月 16日 第38回農薬専門調査会
- 2006年 12月 5日 追加資料受理(参照23)
- 2007年 3月 7日 第9回農薬専門調査会総合評価第一部会
- 2009年 2月 26日 追加資料受理(参照 24)
- 2009年 3月 13日 第29回農薬専門調査会総合評価第二部会
- 2009年 5月 20日 第51回農薬専門調査会幹事会
- 2009年 6月 24日 第31回農薬専門調査会総合評価第二部会
- 2009年 7月 21日 第53回農薬専門調査会幹事会
- 2009 年 8月 27日 第 299 回食品安全委員会 (報告)
- 2009年 8月 27日 から9月25日 国民からの意見・情報の募集
- 2009年 11月 13日 第57回農薬専門調査会幹事会
- 2009年 12月 8日第58回農薬専門調査会幹事会
- 2009年 12月 15日 農薬専門調査会座長から食品安全委員会委員長へ報告
- 2009年 12月 17日 第 314 回食品安全委員会(報告)(同日付け厚生労働大臣へ通知) (参照 27)
- 2010年 11月 9日 残留農薬基準告示 (参照 28)

一第2版関係一

- 2017年 10月 11日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準値設定依頼(適用拡大: すもも、バナナ等)
- 2018年 11月 21日 厚生労働大臣から残留基準設定に係る食品健康影響評価に ついて要請(厚生労働省発生食 1121 第 3 号)、関係書類の 接受(参照 29~33)
- 2018年 11月 27日 第722回食品安全委員会(要請事項説明)
- 2018年 12月 7日 追加資料受理(参照 36、37)
- 2018年 12月 17日 第78回農薬専門調査会評価第二部会
- 2019年 11月 27日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準値設定依頼(適用拡大:ばれいしょ)
- 2019年 12月 3日 追加資料受理(参照 38~42)
- 2020年 1月 27日 第87回農薬専門調査会評価第二部会

2020年 6月 5日第2回農薬第三専門調査会

2020年 6月 16日 第782 回食品安全委員会(報告)

2020年 6月 17日 から7月16日まで 国民からの意見・情報の募集

2020年 8月 26日 農薬第三専門調査会座長から食品安全委員会委員長へ報告

2020年 9月 1日 第 788 回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知) (参照 43)

2021 年 8月 31日 残留農薬基準告示(参照 44)

一第3版関係一

2022 年 4月 27日 農林水産省から厚生労働省へ農薬登録申請に係る連絡及び 基準値設定依頼(適用拡大:ブロッコリー)

2022年 12月 5日 インポートトレランス設定の要請(トマト、アボカド等)

2023年 3月 8日 厚生労働大臣から残留基準設定に係る食品健康影響評価について要請(厚生労働省発生食 0308 第6号)

2023年 3月 9日 関係書類の接受 (参照 45~50)

2023年 3月 14日 第893回食品安全委員会(要請事項説明)

2023年 4月 10日 第21回農薬第三専門調査会

2023年 5月 8日 農薬第三専門調査会座長から食品安全委員会委員長へ報告

2023年 5月 16日 第898回食品安全委員会(報告)

(5月17日付け厚生労働大臣へ通知)

く食品安全委員会委員名簿>

 (2006年6月30日まで)
 (2006年12月20日まで)
 (2009年6月30日まで)

 寺田雅昭(委員長)
 寺田雅昭(委員長)
 見上 彪(委員長)

 寺尾允男(委員長代理)
 小泉直子(委員長代理*)

 小泉直子
 長尾 拓

 坂本元子
 長尾 拓

 中村寺帝
 野村一正

 中村寺帝
 野村一正

中村靖彦野村一正畑江敬子本間清一畑江敬子廣瀬雅雄**

見上 彪 本間清一 本間清一

*: 2007年2月1日から
**: 2007年4月1日から

(2011年1月6日まで)(2021年6月30日まで)小泉直子(委員長)佐藤 洋 (委員長)

見上 彪(委員長代理*) 山本茂貴(委員長代理)

長尾 拓 川西 徹

野村一正吉田 緑畑江敬子香西みどり廣瀬雅雄堀口逸子村田容常吉田 充

*:2009年7月9日から

(2021年7月1日から)

山本茂貴(委員長)

浅野 哲 (委員長代理 第一順位) 川西 徹 (委員長代理 第二順位) 脇 昌子 (委員長代理 第三順位)

香西みどり 松永 和紀 吉田 充

<食品安全委員会農薬専門調査会専門委員名簿>

(2006年3月31日まで)

鈴木勝士 (座長)小澤正吾出川雅邦廣瀬雅雄 (座長代理)高木篤也長尾哲二石井康雄武田明治林 真江馬 眞津田修治*平塚 明太田敏博津田洋幸吉田 緑

*: 2005年10月1日から

(2007年3月31日まで)

鈴木勝士 (座長) 三枝順三 根岸友惠 廣瀬雅雄 (座長代理) 林 佐々木有 直 赤池昭紀 高木篤也 平塚 明 石井康雄 玉井郁巳 藤本成明 泉 啓介 田村廣人 細川正清 上路雅子 津田修治 松本清司 臼井健二 津田洋幸 柳井徳磨 江馬 眞 出川雅邦 山崎浩史 大澤貫寿 長尾哲二 山手丈至 太田敏博 中澤憲一 與語靖洋 大谷 浩 納屋聖人 吉田 緑 小澤正吾 成瀬一郎 若栗 忍

小林裕子

布柴達男

(2008年3月31日まで)

鈴木勝士 (座長) 三枝順三 西川秋佳** 林 真 (座長代理*) 佐々木有 布柴達男 赤池昭紀 代田眞理子**** 根岸友惠 平塚 明 石井康雄 高木篤也 泉 啓介 玉井郁巳 藤本成明 田村廣人 上路雅子 細川正清 臼井健二 津田修治 松本清司 江馬 眞 津田洋幸 柳井徳磨 大澤貫寿 出川雅邦 山崎浩史 太田敏博 長尾哲二 山手丈至 大谷 浩 中澤憲一 與語靖洋 吉田 緑 小澤正吾 納屋聖人 成瀬一郎*** 若栗 忍 小林裕子

*: 2007年4月11日から

**: 2007年4月25日から

***: 2007年6月30日まで

****: 2007年7月1日から

(2010年3月31日まで)

三枝順三***

鈴木勝士 (座長) 佐々木有 平塚 明 林 真(座長代理) 代田眞理子 藤本成明 相磯成敏 高木篤也 細川正清 赤池昭紀 玉井郁巳 堀本政夫 石井康雄 田村廣人 本間正充 泉 啓介 津田修治 松本清司 今井田克己 津田洋幸 柳井徳磨 上路雅子 長尾哲二 山崎浩史 臼井健二 中澤憲一* 山手丈至 太田敏博 永田 清 與語靖洋 大谷 浩 納屋聖人 義澤克彦** 小澤正吾 西川秋佳 吉田緑 若栗 忍 川合是彰 布柴達男 小林裕子 根岸友惠

根本信雄

*:2009年1月19日まで

**: 2009年4月10日から

***: 2009年4月28日から

(2020年3月31日まで)

•	幹事会
---	-----

西川秋佳	(座長)	代田眞理子	本間正充
納屋聖人	(座長代理)	清家伸康	松本清司
赤池昭紀		中島美紀	森田 健
浅野 哲		永田 清	與語靖洋

長野嘉介

小野 敦

• 評価第一部会

浅野	哲	(座長)	篠原厚子	福井剝	遠浩
平塚	明	(座長代理)	清家伸康	藤本原	戈明
堀本政	女夫	(座長代理)	豊田武士	森田	健
赤池區	召紀		中塚敏夫	吉田	充*

石井雄二

• 評価第二部会

松本清司	(座長)	桒形麻樹子	山手丈	至
平林容子	(座長代理)	中島美紀	山本雅	子
義澤克彦	(座長代理)	本多一郎	若栗	忍
小澤正吾		増村健一	渡邉栄	喜

久野壽也

• 評価第三部会

小野 敦 (座長)	佐藤 洋	中山真義
納屋聖人(座長代理)	杉原数美	八田稔久
美谷島克宏(座長代理)	高木篤也	藤井咲子
太田敏博	永田 清	安井 学

腰岡政二

• 評価第四部会

本間正充	(座長)	加藤美紀	玉井郁巳
長野嘉介	(座長代理)	川口博明	中島裕司
與語靖洋	(座長代理)	代田眞理子	西川秋佳
乾 秀之		髙橋祐次	根岸友惠

*: 2018年6月30日まで

<食品安全委員会農薬第三専門調査会専門委員名簿>

(2022年3月31日まで)

松本清司(座長) 菜形麻樹子* 山本雅子

平林容子 (座長代理)古武弥一郎若栗 忍小澤正吾中島美紀渡邉栄喜

久野壽也 山手丈至 *: 2021 年 9 月 30 日まで

(2022年4月1日から)

平林容子 (座長)小嶋五百合安彦行人義澤克彦 (座長代理)古武弥一郎山手丈至小澤正吾杉山圭一渡邉栄喜久野壽也八田稔久渡辺雅彦

桒形麻樹子

<第2回農薬第三専門調査会専門参考人名簿>

<第 21 回農薬第三専門調査会専門参考人名簿>

中島美紀(金沢大学新学術創成研究機構ナノ生命科学研究所教授)

要 約

植物成長調整剤である「1-メチルシクロプロペン」(CAS No.3100-04-7、以下 「1-MCP」という。)について、各種資料を用いて食品健康影響評価を実施した。第 3版の改訂に当たっては、厚生労働省から、植物代謝試験(りんご)、作物残留試験(海外:アボカド)の成績等が新たに提出された。

評価に用いた試験成績は、植物代謝(りんご)、作物残留、動物体内動態(ラット)、 急性毒性(ラット)、亜急性毒性(ラット及びイヌ)、2世代繁殖(ラット)、発生毒性(ラット)、遺伝毒性等である。

各種毒性試験結果から、1-MCP 投与による影響は、主に体重(増加抑制)、赤血球 数減少等並びに肝及び脾のヘモジデリン沈着増加であった。繁殖能に対する影響、催 奇形性及び遺伝毒性は認められなかった。

各種試験結果から、農産物中のばく露評価対象物質を1-MCP(親化合物のみ)と設定した。

食品に残留する農薬の安全性を評価するための試験は、原則として経口投与で行われるが、本剤の有効成分が気体であるという物理化学的性質から原体の経口投与が困難なため、吸入ばく露による試験又は1-MCP/α-シクロデキストリン複合体を用いた経口投与による試験が実施された。

なお、長期投与試験及び非げっ歯類を用いる発生毒性試験の成績がいずれも提出されていないことから、食品に残留する農薬の安全性を評価するために必要な試験項目を充足しておらず、食品安全委員会は、経口ばく露による厳密な意味での許容一日摂取量(ADI)及び急性参照用量(ARfD)を求めることはできないと考えた。

しかしながら、作物残留試験の結果、1-MCPの残留量は極微量であり、農薬登録又は申請された使用方法で適切に使用される限りにおいては食品を通じてヒトの健康に影響を与える可能性は極めて低いと考えた。

I. 評価対象農薬の概要

1. 用途

植物成長調整剤

2. 有効成分の一般名

和名:1-メチルシクロプロペン

英名: 1-methylcyclopropene (ISO 名)

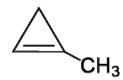
3. 化学名

IUPAC

和名:1-メチルシクロプロペン 英名:1-methylcyclopropene

CAS (No.3100-04-7)

和名:1ーメチルシクロプロペン 英名:1-methylcyclopropene


4. 分子式

 C_4H_6

5. 分子量

54

6. 構造式

7. 物理的化学的性状

融点 : < -100℃ 沸点 : 4.68℃

密度 : 2.24 g/L (20°C) 蒸気圧 : 2×10⁵ Pa (25°C)

外観(色調及び形状)、臭気 : 無色、気体、刺激性微甘臭

水溶解度 : $137 \text{ mg/L} (20^{\circ}\text{C})$ オクタノール/水分配係数 : $\log P_{\text{ow}} = 2.4 (26^{\circ}\text{C})$

解離定数:測定不能

8. 開発の経緯

1-MCP は、フローラライフ社により開発された植物成長調整剤である。本剤は植物体のエチレン受容体に植物ホルモンの一種であるエチレンと拮抗する形で結合することにより、エチレンの生理活性を阻害し、エチレンのもたらす植物体の生理的変化、老化及び劣化を大幅に遅延させる作用を有すると考えられる。

使用方法は、密閉条件で、製剤を水に入れ発生する気体(最大濃度 1 ppm)に作物をばく露させる。

国内では、2010年に初回農薬登録されており、海外では米国、欧州等で登録されている。

第3版では、農薬取締法に基づく農薬登録申請(適用拡大:ブロッコリー)及び インポートトレランス設定(トマト、アボカド等)の要請がなされている。

Ⅱ. 安全性に係る試験の概要

1-MCP の有効成分は気体であり、1,000 ppm 以上では爆発の危険があることから、原体の経口及び経皮投与並びに長期の試験は技術的に困難である。また、作物残留試験の結果から残留値は非常に低く、高濃度による長期ばく露は起こり難いと判断されることから、急性毒性試験、亜急性毒性試験、2世代繁殖試験、発生毒性試験、遺伝毒性試験、刺激性試験及び感作性試験により評価することとされた。

各種動態及び代謝試験 [II.3、4及び9] は、1-MCP のシクロプロペン環の 3 位の炭素を 14 C で標識したもの(14 C-1-MCP)を用いて実施された。放射能濃度及び代謝物濃度は特に断りがない場合は比放射能(質量放射能)から 1-MCP の濃度(14 MCP の濃度 14 MCP に換算した値として示した。

代謝物/分解物略称及び検査値等略称は、別紙1及び2に示されている。

1. 水中動態試験

(1) 加水分解試験

1-MCP を用いて、加水分解試験が実施された。 試験の概要及び結果は表1に示されている。(参照1、4)

See a series of the series of			
試験条件	緩衝液	分解率(%)a	
武 聚未什	液倒似	2.4 時間後	
添加濃度不明、密栓、	pH 4.0(フタル酸緩衝液)		
50±0.1℃、最長 120 時	pH 7.0(リン酸緩衝液)	> 70%	
間インキュベート	pH 9.0(ホウ酸緩衝液)		

表 1 加水分解試験の概要及び結果

2. 大気中光分解試験

対流圏における 1-MCP の光化学反応を、コンピュータープログラム AOPMWIN を用いて検証した。

試験の概要及び結果については表2に示されている。(参照1、5)

×-	> \> \ > > > > > > > >	~ O 1/H / N
計	推定半減期	
25℃、1 日の日照時間を	ヒドロキシラジカルの付加	2.88 時間(0.12 日)
12 時間として計算。	オゾンとの反応 a	43 分(0 03 日)

表 2 大気中光分解試験の概要及び結果

3. 植物、家畜等における代謝及び残留試験

(1) 植物代謝試験

① りんご①

収穫後約4か月間、1℃で冷蔵保存した2.6 kg のりんご(品種:レッドデリシ

a:推定半減期は算出されなかった。

a: オゾン濃度を 7×10¹¹ 分子/cm³ とした場合

ャス)を 10.4 L のガラス容器に入れ、 14 C-1-MCP を、容器内に均一に分布した際に $1,200~\mu g/kg$ になるように添加後、24 時間、20°C でばく露する植物代謝試験が実施された。

りんご果汁中の残留放射能濃度は表 3 に、りんごの部位別残留放射能濃度は表 4 に、りんごの組成別残留放射能濃度は表 5 に示されている。

りんご果実中における総残留放射能濃度が $2.73~\mu g/kg$ であったのに対し、全果 汁中では 1.80% TRR $(0.05~\mu g/kg)$ であった。フィルターろ過後の果汁(ろ過分) は更に低い残留濃度を示した。

部位別の残留放射能濃度は高い方から果皮、芯、果肉であり、果肉への残留は全体の14.6%TRR と低かった。

組織別残留放射能濃度は、セルロース/リグニン画分への残留が 69.4%TRR と最も高く、次いでタンパク質、水溶性画分の順であった。 (参照 1、3)

果汁 10 μm ろ過分 0.45 μm ろ過分 総残留放射能 残留放射能 残留放射能 残留放射能 濃度 全体比 全体比 全体比 濃度 濃度 濃度 $(\mu g/kg)$ (%TRR) (%TRR) (%TRR) $(\mu g/kg)$ $(\mu g/kg)$ $(\mu g/kg)$ 2.73 0.049 1.80 0.031 1.14 0.023 0.84

表3 りんご果汁中の残留放射能濃度

表4 りんごの部位別残留放射能濃度

組織	残留放射能濃度 (μg/kg)	全体比(%TRR)
果皮	1.35	50.0
芯	0.956	35.4
果肉	0.390	14.6

表5 りんごの組成別残留放射能濃度

表。								
	全	体	果	皮	 1	<u> </u>	果	.肉
	残留		残留		残留		残留	
	放射能	全体比 a	放射能	総和比 b	放射能	総和比 b	放射能	総和比 b
	濃度	(%TRR)	濃度	(%TRR)	濃度	(%TRR)	濃度	(%TRR)
	(µg/kg)		(µg/kg)		$(\mu g/kg)$		$(\mu g/kg)$	
水溶性物質	0.191	7.63	0.076	5.83	0.048	5.51	0.067	19.1
脂質/脂肪	0.074	2.95	0.032	2.49	0.012	1.42	0.029	8.15
タンパク質	0.300	12.0	0.047	3.67	0.218	24.7	0.035	9.96
デンプン	0.051	2.07	0.006	0.50	0.006	0.66	0.039	11.1
セルロース/ リグニン	1.73	69.4	1.05	81.0	0.527	60.7	0.156	44.5

a: りんご全体として測定された放射能に対する割合

b: 各部位の各成分からの測定値を足したものに対する割合

② りんご②

8個(1.64 kg)の市販のりんご(品種:ガーラ)を 6.02 L の気密チャンバーに入れ、 14 C-1-MCP を 1 mg/kg の濃度で 4^{\circ}C、24 時間ばく露した後、チャンバーの排気を水酸化カリウム溶液及び活性炭カラムに捕集し、チャンバー内を真空状態とした。この操作を 24 時間間隔で更に 2 回繰り返し、計 3 回りんごを 14 C-1-MCPにばく露して、植物代謝試験が実施された。

りんご果実中の残留放射能分布は表 6 に示されている。

残留放射能は、りんごで 79.8%TAR、活性炭で 12.9%TAR、水酸化カリウム溶液で 0.12%TAR 認められた。

りんご試料のエーテル、DMSO/エタノール等による抽出の結果、放射能の大部分(0.0129~mg/kg、71.8%TRR)がセルロース及びリグニン画分に認められた。このセルロース及びリグニン画分をアセトニトリル、酵素処理、塩酸/水酸化ナトリウム処理した結果、0.0018~mg/kg(9.79%TRR)が抽出残渣中に認められた。各段階における抽出画分中の放射能で0.01~mg/kgを超えるものは認められなかった。(参照 48)

		%TRR	mg/kg
	総残留放射能濃度	100	0.018
	エーテル抽出画分	2.29	0.0004
	水画分	6.87	0.0012
	水酸化ナトリウム抽出画分	2.71	0.0005
	タンパク質沈降物	11.9	0.0021
	抽出残渣①	76.2	0.0137
	DMSO/エタノール抽出画分	2.54	0.0005
	デンプン画分	2.98	0.0005
	抽出残渣②	71.8	0.0129
	アセトニトリル抽出画分	0.39	0.0001
	酵素処理a画分	7.21	0.0013
	塩酸/水酸化ナトリウム処理 b 画分	50.0	0.0089
	抽出残渣③	9.79	0.0018
1,5.	-ガ ペカチナーガ ペーアミラーガ ヘミカル	ラーゼ及びプロニ	マーゼの泪へ畔

表 6 りんご果実中の残留放射能分布

③ りんご③

7個(1.50 kg)の市販のりんご(品種:ガーラ)を 6.02 L の気密チャンバーに入れ、 $^{14}\text{C-1-MCP}$ を 5 mg/kg の濃度で 4°C 、 $24 \text{ 時間ばく露した後、チャンバーの排気を水酸化カリウム溶液及び活性炭カラムに捕集して、植物代謝試験が実施された。$

りんご果実中の残留放射能分布は表7に示されている。

a:セルラーゼ、ペクチナーゼ、α-アミラーゼ、ヘミセルラーゼ及びプロテアーゼの混合酵素。

 $^{^{\}rm b}$: 1 mol/L 塩酸、1 mol/L 水酸化ナトリウム、6 mol/L 塩酸、6 mol/L 水酸化ナトリウム処理の合計。 単一画分の最大値は 0.0053 mg/kg(29.6%TRR)。

残留放射能は、りんごで 90.6%TAR、活性炭で 0.25%TAR、水酸化カリウム溶液で 0.02%TAR 認められた。

りんご試料のエーテル、DMSO/エタノール等による抽出の結果、放射能の大部分(0.0216~mg/kg、48.1%TRR)がセルロース及びリグニン画分に認められた。このセルロース及びリグニン画分をアセトニトリル、酵素処理及び塩酸/水酸化ナトリウム処理した結果、0.0021~mg/kg(4.66%TRR)が抽出残渣中に認められた。各段階における抽出画分中の放射能で0.01~mg/kgを超えるものは認められなかった。(参照 49)

2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
	%TRR	mg/kg
総残留放射能濃度	100	0.045
エーテル抽出画分	1.67	0.0008
水画分	10.5	0.0047
水酸化ナトリウム抽出画分	1.71	0.0008
タンパク質沈降物	14.4	0.0065
抽出残渣①	71.7	0.0322
DMSO/エタノール抽出画分	16.2	0.0073
デンプン画分	1.83	0.0008
抽出残渣②	48.1	0.0216
アセトニトリル抽出画分	0.38	0.0002
酵素処理a画分	10.3	0.0046
塩酸/水酸化ナトリウム抽出 6 画分	28.4	0.0127
抽出残渣③	4.66	0.0021
 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- N7-11-0 -	

表7 りんご果実中の残留放射能分布

(2) 作物残留試験

国内において、りんご、なし等を用いて、1-MCPを分析対象化合物とした作物 残留試験が実施された。

結果は別紙3及び4に示されている。

1-MCP の最大残留値は、室温処理終了 8日(192 時間)後のりんご(ガーラ種)の $9.11\,\mu g/kg$ であった。

また、海外において、アボカドを用いて、1-MCPを分析対象化合物とした作物 残留試験が実施された。

結果は別紙5に示されている。

1-MCP の最大残留値は、処理終了直後のアボカド(果皮)の $22.8~\mu g/kg$ 、可食部における最大残留値は、処理終了直後のアボカド(果肉)の $3.76~\mu g/kg$ であった。(参照 1、 $6\sim8$ 、 $30\sim33$ 、38、40、46、47、50)

a: セルラーゼ、ペクチナーゼ、α-アミラーゼ、ヘミセルラーゼ及びプロテアーゼの混合酵素。

 $^{^{\}rm b}:1$ mol/L 塩酸、1 mol/L 水酸化ナトリウム、6 mol/L 塩酸、6 mol/L 水酸化ナトリウム処理の合計。 単一画分の最大値は 0.0069 mg/kg(15.4%TRR)。

(3) 推定摂取量

別紙3及び4の作物残留試験成績の分析値に基づき、1-MCPをばく露評価対象物質とした際に、食品中から摂取される推定摂取量が表8に示されている。

なお、本推定摂取量の算定は、登録又は申請された使用条件から 1-MCP が最大の残留を示す使用条件で、全ての適用作物に使用され、加工・調理による残留農薬の増減が全くないとの仮定の下に行った。

			10	这四十7.	りがまた	Ara I III		メルモ		
ĺ		残留値	— + •	平均	小児(1	~6 歳)	妊	婦	高齢者(6	5歳以上)
	作物名		(体重:	55.1 kg)	(体重:	16.5 kg)	(体重:	58.5 kg)	(体重:	56.1 kg)
		(mg/kg)	ff	摂取量	ff	摂取量	ff	摂取量	ff	摂取量
	りんご	0.0054	24.2	0.13	30.9	0.17	18.8	0.10	32.4	0.17
	合	計		0.13		0.17		0.10		0.17

表8 食品中から摂取される 1-MCP の推定摂取量

- ・残留値は登録又は申請されている使用時期・回数のうち最大の残留を示す各試験区の平均残留値を用 いた。
- ・「ff」: 平成 17~19 年の食品摂取頻度・摂取量調査(参照 34)の結果に基づく食品摂取量(g/人/日)
- ・「摂取量」: 残留値から求めた 1-MCP の推定摂取量(μg/人/日)
- ・ばれいしょ、なし、かき、バナナ、キウイフルーツ、すもも及びブロッコリーについては、全データ が定量限界未満であったため、摂取量の計算に含めていない。

4. 動物体内動態試験

- (1) ラット(経口投与)
- ① 吸収

a. 血中濃度推移

SD ラット (一群雌雄各 3 匹) に、 14 C-1-MCP/ α -シクロデキストリン複合体(有効成分 3.16%又は 3.2%を含む。)を 2 mg/kg 体重(以下 [4.(1)] において「低用量」という。)又は 40 mg/kg 体重(以下 [4.(1)] において「高用量」という。)の用量で単回経口投与して、動物体内動態試験が実施された。

全血及び血漿中薬物動態学的パラメータは表 9 に示されている。

全血及び血漿中放射能濃度は、投与後 $1\sim3$ 時間で C_{max} に達した後、投与 24 時間後までは速やかに、その後は緩やかに減衰した。 C_{max} 、 AUC_{0-} 及び AUC_{0-} の増加は、投与量の増加より小さく、非線形を示した。投与放射能の血中動態について、性別の違いによる顕著な差は認められなかった。 (参照 39)

表 9 全血及び血漿中薬物動態学的パラメータ

投与量			2 mg/k	g体重	40 mg/l	kg 体重
	性別		雄	雌	雄	雌
	$T_{max}(hr)$		1.67	3.00	2.33	3.00
	$C_{max}(\mu g/g)$		0.636	0.520	4.44	4.08
全血	$T_{1/2}$ (hr)	$0{\sim}24~\mathrm{hr}$	10.7	12.2	16.0	18.3
土	1 1/2 (III')	$0{\sim}96\mathrm{hr}$	51.4	60.0	44.1	52.2
	$\mathrm{AUC}_{0^-\mathrm{t}}(\mathrm{hr} \cdot$	μg/g)	13.1	15.1	136	141
	$\mathrm{AUC}_{0^{-}\infty}(\mathrm{hr}\; ullet$	μg/g)	16.9	20.8	169	191
	$T_{max}(hr)$		1.67	1.00	2.33	3.00
	$C_{max}(\mu g/g)$		0.881	0.652	3.98	3.78
血漿	$T_{1/2}$ (hr)	$0{\sim}24~\mathrm{hr}$	11.1	11.8	14.9	16.9
1111.90	1 1/2 (III')	$0{\sim}96\mathrm{hr}$	39.7	48.5	50.9	72.8
	AUC _{0-t} (hr·	μg/g)	13.1	15.1	119	134
	$\mathrm{AUC}_{0^{-}\infty}(\mathrm{hr}\; ullet$	μg/g)	15.4	19.1	156	214

AUC_{0-t}:定量可能な時点までの薬物濃度曲線下面積

b. 吸収率

排泄試験 [4.(1)④] において得られた尿、呼気及びケージ洗浄液中の放射能 濃度から算出された単回投与後 96 時間の吸収率は、少なくとも 88.8%~94.9%であった。 (参照 39)

② 分布

SD ラット (一群雌雄各 4 匹) に、 14 C-1-MCP/ α -シクロデキストリン複合体(有効成分 3.16%又は 3.2%を含む。)を低用量若しくは高用量で単回経口投与又は 2 mg/kg 体重/日の用量で 5 日間経口投与(以下 [4.(1)] において「反復投与」という。)して、体内分布試験が実施された。

主要臓器及び組織における残留放射能濃度は表10に示されている。

低用量単回投与群における残留放射能は、投与 1 時間 (T_{max}付近)では肝臓、腎臓、甲状腺、脾臓、副腎等で比較的高く認められたが、投与 96 時間後には顕著に減少した。また、低用量単回投与群及び反復投与群における投与 96 時間後の残留放射能濃度にも大きな差は認められなかった。 (参照 39)

表 10 主要臓器及び組織における残留放射能濃度 (µg/g)

Ln. L		⇒ Natol						
投与 頻度	投与量	試料 採取時間	性別	残留放射能				
		投与	雄	肝臓(2.70)、腎臓(2.62)、血漿(1.01)、全血(0.746)、脾臓(0.729)、甲状腺(0.680)、肺(0.657)、骨髄(0.643)、副腎(0.578)、心臓(0.548)、脳(0.368)、精巣(0.266)、筋肉(0.223)、脂肪(0.095)				
	о л	1 時間後	雌	腎臓(1.61)、肝臓(1.40)、血漿(0.800)、甲状腺(0.564)、全血(0.563)、肺(0.528)、脾臓(0.527)、副腎(0.520)、卵巣(0.502)、骨髄(0.470)、心臓(0.376)、脳(0.270)、筋肉(0.159)、脂肪(0.136)				
単回	2 mg/kg 体重		推					
投与			雌	肝臓(0.356)、副腎(0.203)、腎臓(0.164)、骨髄(0.160)、脾臓(0.142)、甲状腺(0.132)、卵巣(0.117)、肺(0.114)、脂肪(0.099)、全血(0.085)、脳(0.082)、心臓(0.077)、血漿(0.067)、筋肉(0.051)				
	40 mg/kg		雄	肝臓(4.90)、副腎(1.31)、腎臓(1.26)、骨髄(1.05)、甲状腺(0.892)、血漿(0.888)、肺(0.864)、脾臓(0.789)、全血(0.764)、心臓(0.518)、精巣(0.491)、脳(0.486)、筋肉(0.406)、脂肪(0.083)				
	体重		雌	肝臓(3.84)、副腎(1.42)、腎臓(1.24)、血漿(1.07)、甲状腺(1.04)、 脾臓(0.866)、全血(0.861)、骨髄(0.854)、肺(0.821)、卵巣(0.793)、 心臓(0.528)、脂肪(0.517)、脳(0.368)、筋肉(0.241)				
反復	2 mg/kg	最終投与	雄	肝臓(0.663)、副腎(0.316)、甲状腺(0.247)、腎臓(0.221)、脂肪(0.206)、脾臓(0.174)、骨髄(0.168)、肺(0.150)、全血(0.132)、心臓(0.105)、精巣(0.101)、脳(0.088)、筋肉(0.088)、血漿(0.086)				
投与	体重/日	96 時間後	雌	副腎(0.539)、肝臓(0.472)、甲状腺(0.317)、腎臓(0.311)、骨髄(0.270)、卵巣(0.246)、脾臓(0.232)、肺(0.204)、脂肪(0.177)、全血(0.172)、血漿(0.119)、脳(0.114)、心臓(0.110)、筋肉(0.088)				

③ 代謝

分布試験 [4.(1)②] で得られた尿及び糞を試料として代謝物同定・定量試験が実施された。

尿中の主要代謝物は表 11 に示されている。

尿中には 7 種類の代謝物が認められ、投与量又は性別による代謝物プロファイルに顕著な差は認められなかった。いずれの投与群においても未変化の 1-MCP は認められなかった。

糞中には 0.3%TAR を超える成分は認められなかった。

1-MCP のラットにおける主な代謝物は、主にグルタチオン抱合により生成すると考えられた。そのほかにグルクロン酸(M7)が検出され、1-MCP の代謝過程で生成すると考えられた。(参照 39)

表 11 尿中の主要代謝物 (%TAR)

	投与量	試料採取 時間	性別	1-MCP	代謝物
			雄	ND	M3(5.39), M2(3.86), M5(3.71), M4(1.43), M1(1.25), M7(0.86), M6(0.39)
単回	2 mg/kg 体重	0~48	雌	ND	M5(7.39), M3(4.84), M2(3.35), M7(1.10), M4(1.08), M1(1.01), M6(0.38)
投与		時間	雄	ND	M1(5.39), M3(2.49), M5(2.38), M2(1.73), M6(1.61), M4(0.90), M7(0.35)
	40 mg/kg 体重		雌	ND	M1(4.42), M5(4.17), M3(2.20), M6(2.02), M2(1.93), M4(0.49), M7(0.43)
		0~24 時間	時間 96~120 雄	ND	M1(3.35), M3(0.67), M2(0.55), M5(0.49), M4(0.22), M6(0.19), M7(0.12)
反復	0 /1 仕手/日	96~120 時間		ND	M1(1.91), M3(0.65), M5(0.60), M6(0.44), M2(0.34), M4(0.21), M7(0.11)
投与	2 mg/kg 体重/日	0~24 時間	-44.11.	ND	M1(3.88), M5(0.95), M2(0.48), M3(0.41), M4(0.16), M6(0.13), M7(0.13)
		96~120 時間	雌	ND	M1(3.12), M5(1.16), M3(0.50), M2(0.42), M6(0.36), M4(0.17), M7(0.13)

ND: 検出されず

反復投与群の試料採取時間は初回投与後の時間

4 排泄

分布試験 [4.(1)②] で得られた尿、糞、呼気及びケージ洗浄液を試料として 排泄試験が実施された。

尿、糞及び呼気中排泄率は表 12 に示されている。

いずれの投与群においても排泄は速やかで、投与放射能は単回投与群で投与後 96 時間に 96.1% $TAR \sim 101$ %TAR が、反復投与群で初回投与後 192 時間に 98.3% $TAR \sim 98.8$ %TAR が排泄され、主に呼気中に排泄された。呼気中には、低用量単回投与群では $^{14}CO_2$ としての、高用量単回投与群では揮発性有機物としての排泄が多かった。 (参照 39)

表 12 尿、糞及び呼気中排泄率 (%TAR)

投与頻度			単回投与				反復投与	
	投与	量	2 mg/kg 体重 40		40 mg/	kg 体重	2 mg/kg 体重/日	
	性別	}I]	雄	雌	雄	雌	雄	雌
		0~24 時間	23.9	24.4	20.7	21.8	7.30	7.63
	尿	0~48 時間	24.6	25.7	22.9	23.2	14.4	15.1
,		0~96 時間	25.0	26.1	23.5	23.5	30.2	30.8
		0~192 時間					37.4	39.5
		0~24 時間	4.00	3.33	4.44	4.49	2.25	1.79
	糞	0~48 時間	4.93	5.70	6.95	7.00	4.42	3.33
	美	0~96 時間	5.15	5.93	7.06	7.22	8.66	7.35
		0~192 時間					11.4	9.72
		0~24 時間	58.5	56.3	24.2	22.5	7.84	7.62
	$^{14}\mathrm{CO}_2$	0~48 時間	60.8	58.6	25.6	23.4	16.2	16.3
呼気	11002	0~96 時間	62.8	59.9	26.5	24.0	32.7	34.1
叶刈		0~192 時間					42.9	43.9
	揮発性	0~96 時間	3.62	4.36	39.7	38.5	1.71	0.81
	有機物	0~192 時間					2.00	0.96
		0~24 時間	3.09	3.39	3.08	2.14	0.68	0.90
ケージ	シ洗浄液	0~48 時間	3.27	3.61	3.64	2.62	1.52	1.80
	イカレイザイグ	0~96 時間	3.43	3.71	3.90	2.83	3.22	3.45
	変形とわず	0~192 時間					4.57	4.67

/:採取されず

反復投与群の試料採取時間は初回投与後の時間

5. 急性毒性試験等

(1) 急性毒性試験(経口投与)

1-MCP (製剤) のラットを用いた急性毒性試験が実施された。 結果は表 13 に示されている。 (参照 1、11)

表 13 急性毒性試験概要 (経口投与、製剤)

動物種	LD ₅₀ (mg	/kg 体重)	観察された症状
性別・匹数	雄	雌	観祭された姫仏
SD ラット	> 5,000	> 5,000	定比及び死亡例わ 1
一群雌雄各 5 匹 a	(> 165)	(> 165)	症状及び死亡例なし

():有効成分換算值

a:1-MCP/α-シクロデキストリン複合体(有効成分3.3%を含むくん蒸剤)をコーン油に 懸濁して用いられた。

(2) 一般薬理試験

1-MCP のモルモット及びヒト血液を用いた一般薬理試験が実施された。 結果は表 14 に示されている。(参照 1、9)

表 14 一般薬理試験概要

話	大験の種類	動物種	動物数 匹/群	ばく露量 (ppm) (投与経路)	最大 無作用量 (ppm)	最小 作用量 (ppm)	結果の概要
中枢神経系	一般状態 (Irwin 法)	Hartley モルモット	雄 2 雌 1	0、1,000 (吸入)	1,000	_	投与による影響 なし
呼吸循環系	心拍、呼吸	Hartley モルモット	雄 2 雌 1	0、1,000 (吸入)	1,000	_	投与による影響 なし
自律神経系	瞳孔径、 眼瞼、瞬膜 反射	Hartley モルモット	雄 2 雌 1	0、1,000 (吸入)	1,000	_	投与による影響 なし
麻酔作用	麻酔作用	Hartley モルモット	雄 1 雌 2	0、1,000 (吸入)	1,000	I	投与による影響 なし
腎臓	病理組織 学的検査	Hartley モルモット	雄 3 雌 3	0、1,000 (吸入)	1,000	_	投与による影響 なし
血液	溶血作用	ヒト血液		0、3、10、30 mg/10 mL 血球懸濁液 (in vitro)	30 mg/10 mL 血球 懸濁液	_	溶血作用なし

-:最小作用量は設定できない。

/:該当なし

6. 亜急性毒性試験

(1)90日間亜急性毒性試験(ラット)

SD ラット (一群雌雄各 10 匹) を用いた混餌投与 $[1-MCP/\alpha-シクロデキストリン複合体 (有効成分 4.7%を含む。):0 (基礎飼料)、<math>0(\alpha-シクロデキストリン)、1,500、7,500 及び 20,000 ppm: 平均検体摂取量は表 15 参照] による 90 日間亜 急性毒性試験が実施された。$

表 15 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

投与群		1,500 ppm	7,500 ppm	20,000 ppm
平均検体摂取量	雄	98(4.6)	477(22.4)	1,290(60.6)
(mg/kg 体重/日)	雌	112(5.3)	564(26.5)	1,510(71.1)

():有効成分換算值

各投与群で認められた毒性所見は表 16 に示されている。

本試験において、20,000 ppm 投与群の雌雄で赤脾髄(脾臓)のヘモジデリン沈 着増加等が認められたことから、無毒性量は雌雄とも 7,500 ppm(雄: 22.4 mg/kg 体重/日、雌: 26.5 mg/kg 体重/日)であると考えられた。(参照 41)

表 16 90 日間亜急性毒性試験 (ラット) で認められた毒性所見

投与群	雄	雌
20,000 ppm	 ・体重増加抑制(投与 1~5 週)及び 摂餌量減少(投与 1~5 週) ・RBC 及び Hb 減少 ・Ret 増加 ・赤脾髄のヘモジデリン沈着増加 	 ・体重増加抑制(投与 1~3 週)及び 摂餌量減少(投与 2~4 週)^a ・RBC、Ht 及び Hb 減少 ・Ret 増加 ・肝比重量増加 ・赤脾髄のヘモジデリン沈着増加及 び髄外造血亢進
7,500 ppm 以下	毒性所見なし	毒性所見なし

α・シクロデキストリンのみの投与では、毒性学的意義のある変化は認められなかった。

(2) 90 日間亜急性毒性試験 (イヌ)

ビーグル犬(一群雌雄各 4 匹)を用いた混餌投与 $[1-MCP/\alpha-シクロデキストリン複合体(有効成分 4.54%を含む。):0(基礎飼料)、<math>0(\alpha-シクロデキストリン)、2,500、7,500 及び 20,000 ppm: 平均検体摂取量は表 17 参照] による 90日間亜急性毒性試験が実施された。$

表 17 90 日間亜急性毒性試験 (イヌ) の平均検体摂取量

投与群		2,500 ppm	7,500 ppm	20,000 ppm	
平均検体摂取量	平均検体摂取量 雄		271 (12.3)	771 (35.0)	
(mg/kg 体重/日)	雌	91 (4.1)	270 (12.3)	685 (31.1)	

():有効成分換算值

各投与群で認められた毒性所見は表 18 に示されている。

本試験において、7,500 ppm 以上投与群の雌雄で肝細胞褐色色素沈着等が認められたことから、無毒性量は雌雄とも 2,500 ppm (雄:4.3 mg/kg 体重/日、雌:4.1 mg/kg 体重/日)であると考えられた。 (参照 36)

a: 統計学的有意差はないが、検体投与による影響と判断した。

表 18 90 日間亜急性毒性試験 (イヌ) で認められた毒性所見

投与群	雄	雌
20,000 ppm	・体重増加抑制(投与1週以降)及び摂	・体重増加抑制(投与1週以降)及び摂
	餌量減少(投与1週)	餌量減少(投与1週)
	・Ret 及び MCV 増加	・RBC、Ht 及び Hb 減少 a
	・MCHC 減少	・Ret 及び MCV 増加
	・T.Bil 増加	・MCHC 減少
	・SDH 増加	・SDH 増加
	・精巣絶対及び比重量1減少 a	肝炎症細胞浸潤
	・精巣上体内腔における精子数減少	
	・精巣における精子細胞変性	
	・肝炎症細胞浸潤	
7,500 ppm	・RBC、Ht 及び Hb 減少	・T.Bil 増加
以上	・ALT 増加	・ALT 増加
	• 肝細胞褐色色素沈着 b	• 肝細胞褐色色素沈着 c
2,500 ppm	毒性所見なし	毒性所見なし

- α-シクロデキストリンのみの投与では、毒性学的意義のある変化は認められなかった。
- a:統計学的有意差はないが、検体投与による影響と判断した。
- b: 20,000 ppm 投与群では鉄染色によりヘモジデリンであること、Hall 染色により胆汁色素であること、AFIP 染色によりリポフスチンであること、7,500 ppm 投与群では Hall 染色により胆汁色素であることを、それぞれ確認。
- 。: 20,000 ppm 投与群では鉄染色によりヘモジデリンであること、Hall 染色により胆汁色素であること、AFIP 染色によりリポフスチンであること、7,500 ppm 投与群では Hall 染色により胆汁色素であること、AFIP 染色によりリポフスチンであることを、それぞれ確認。

7. 生殖発生毒性試験

(1) 2世代繁殖試験(ラット)

SD ラット (一群雌雄各 25 匹) を用いた混餌投与 $[1-MCP/\alpha-シクロデキストリン複合体(有効成分 4.54%を含む。):0(基礎飼料)、<math>0(\alpha-シクロデキストリン)、1,500、7,500 及び 20,000 ppm: 平均検体摂取量は表 19 参照] による 2 世代繁殖試験が実施された。$

表 19 2世代繁殖試験 (ラット) の平均検体摂取量

投与郡	羊		1,500 ppm	7,500 ppm	20,000 ppm
平均検体摂取量 (mg/kg 体重/日)	P 世代	雄	90 (4.1)	456 (20.7)	1,190 (54.0)
	P世代	雌	105 (4.8)	540 (24.5)	1,390 (63.1)
	F ₁ 世代	雄	110 (5.0)	547 (24.8)	1,440 (65.4)
	Г 1 世1√	雌	116 (5.3)	567 (25.7)	1,540 (69.9)

():有効成分換算值

各投与群で認められた毒性所見は表 20 に示されている。

本試験において、親動物では 7,500 ppm 以上投与群の雌雄で体重増加抑制及び 摂餌量減少等が認められ、児動物ではいずれの投与群においても毒性所見が認め

-

¹ 体重比重量を比重量という(以下同じ。)。

られなかったことから、無毒性量は親動物の雌雄で 1,500 ppm(P 雄: 4.1 mg/kg 体重/日、P雌: 4.8 mg/kg 体重/日、 F_1 雄: 5.0 mg/kg 体重/日、 F_1 雄: 5.3 mg/kg 体重/日)、児動物では本試験の最高用量 20,000 ppm(P 雄: 54.0 mg/kg 体重/日、P 雌: 63.1 mg/kg 体重/日、 F_1 雄: 65.4 mg/kg 体重/日、 F_1 雄: 69.9 mg/kg 体重/日)であると考えられた。繁殖能に対する影響は認められなかった。(参照 37)

表 20	2世代繁殖試験	(与 w	L)	で認められた毒性所見
12 20		()	1 ' /	しゅじひょうりょしん サニルカ 元

	投与群	親 : P、	児:F1	親:F ₁ 、児:F ₂		
	汉子仲	雄	雌	雄	雌	
	20,000 ppm	・体重増加抑制及び 摂餌量減少(投与1 週以降)				
親動物	7,500 ppm 以上	7,500 ppm 以下 毒性所見なし	7,500 ppm 以下 毒性所見なし	・体重増加抑制及び 摂餌量減少	・体重増加抑制 a 及び摂餌量減少・子宮絶対及び比重量増加 a	
	1,500 ppm			毒性所見なし	毒性所見なし	
	20,000 ppm 以下	毒性所見なし	毒性所見なし	毒性所見なし	毒性所見なし	

α·シクロデキストリンのみの投与では、毒性学的意義のある変化は認められなかった。

(2)発生毒性試験(ラット)

SD ラット (一群雌 22 匹) の妊娠 $6\sim19$ 日に吸入ばく露(原体:0、100、300 及び1,000 ppm:平均実測濃度及び平均検体摂取量は表21 参照、6 時間/日)して、発生毒性試験が実施された。

表 21 発生毒性試験 (ラット) の平均実測濃度及び平均検体摂取量

ばく露群	100 ppm	300 ppm	1,000 ppm	
は、路件	雌	雌	雌	
平均実測濃度(ppm、v/v)	107	329	1,030	
平均実測濃度(mg/m³)	240	737	2,310	
平均体重(g)	292	292	286	
検体摂取量 1) (mg/kg 体重/日)	57.2	176	549	
吸収率を考慮した検体摂取量2)	F 70	17.0	5 4.0	
(mg/kg 体重/日)	5.72	17.6	54.9	

¹⁾ 平均呼吸量 0.2 L/min、1 気圧、20℃で理想気体式に従うと仮定

1,000 ppm ばく露群の母動物において、体重増加抑制(妊娠 $6\sim9$ 日)及び摂餌量減少(妊娠 $6\sim9$ 日)が認められた。また、妊娠 20 日の剖検で、1,000 ppm ば

a:統計学的有意差はないが、検体投与による影響と判断した。

²⁾ 動物体内動態試験の結果から、体内吸収率は10%と推定された。

く露群の全例及び300 ppm ばく露群の5例に脾暗色化が認められた。

胎児の生存性及び体重増加にはばく露の影響は認められず、また、外表、骨格 及び内臓所見にもばく露に起因した異常は認められなかった。

本試験において、母動物では 300 ppm 以上ばく露群で脾暗色化が認められ、胎児では検体ばく露に関連する変化は認められなかったことから、無毒性量は母動物で 100 ppm(5.72 mg/kg 体重/日)、胎児で本試験の最高用量 1,000 ppm(54.9 mg/kg 体重/日)であると考えられた。催奇形性は認められなかった。(参照 1、17)

8. 遺伝毒性試験

1-MCP (製剤及び原体)の細菌を用いた復帰突然変異試験、チャイニーズハムスター卵巣由来細胞 (CHO)を用いた遺伝子突然変異試験、ヒト末梢血リンパ球を用いた *in vitro* 染色体異常試験及びマウスを用いた *in vivo* 小核試験が実施された。

結果は表 22 に示されているとおり全て陰性であったことから、1-MCP に遺伝毒性はないものと考えられた。 (参照 1、 $18\sim21$)

	試験	対象	処理濃度・ばく露量	結果
	復帰突然変異試験a	Salmonella typhimurium (TA98、TA100、TA102、 TA1535、TA1537 株)	10~1,000 ppm (+/-S9)	陰性
in vitro	遺伝子突然変異試験 a	チャイニーズハムスター 卵巣由来細胞(CHO) (<i>Hgprt</i> 遺伝子)	100~1,000 ppm (+/-S9) (4 時間処理)	陰性
	染色体異常試験 a	ヒト末梢血リンパ球	100~1,000 ppm (+/-S9) (-S9:19 時間処理後 3 時間 培養、+/-S9:4 時間処理後 18 時間培養)	陰性
in vivo	小核試験	ICR マウス(骨髄細胞) (一群雌雄各 5~7 匹)	100~1,000 ppm (吸入ばく露 6 時間)	陰性

表 22 遺伝毒性試験概要(製剤及び原体)

9. 経皮投与、吸入ばく露等試験

(1)動物体内動態試験(ラット)(吸入ばく露)

30 L 容量のテドラー気体採取袋をばく露容器として、SD ラット(一群雌雄各 1 ~4 匹)に、 ^{14}C -1-MCP を 100 ppm(以下 [9.(1)]において「低濃度」という。)又は 1,000 ppm(以下 [9.(1)]において「高濃度」という。)の濃度で 4 時間吸入ばく露させる動物体内動態試験が実施された。

注) +/-S9: 代謝活性化系存在下及び非存在下

a: 製剤(3.3%くん蒸剤)から発生させた1-MCPを検体とした。

① 吸収

血中放射能濃度推移は表 23 に示されている。

低濃度ばく露終了後 20 時間で、全血中では、雄でピーク時濃度の 62%が、雌で同じく 67%が、血漿中でも同様に 46%及び 50%が消失した。また、高濃度ばく露群の全血中では、雄で 44%、雌で 50%が、血漿中でも同様に 13%及び 16%が、それぞれ消失した。いずれもばく露終了直後から 4 時間までの消失速度は、 $4\sim20$ 時間までの消失速度より大きい傾向が認められた。

カーカス 2 、尿及び糞中の放射能 [9.(1)3] から、経気道吸収率は 1.36%~ 5.77%であり、試験の特殊性等も考慮すれば、最大でも経気道吸収率は 10%程度と推定された。 (参照 1.2)

ばく露量	性別	部位	ばく露開始1時間後	ばく露終了時 ^a (ばく露開始 4時間後)	ばく露終了 20 時間後 (ばく露開始 24 時間後)		
	雄	全血	1.10	1.96	0.754		
100 222	水 臣	血漿	1.72	2.58	1.42		
100 ppm	雌	全血	1.23	2.07	0.695		
		血漿	1.32	1.96	1.01		
	雄	全血	6.27	11.2	4.55		
1 000 222	丛 田	血漿	6.31	10.9	9.54		
1,000 ppm	雌	全血	6.30	10.9	4.69		
	此臣	血漿	4.88	10.1	8.52		

表 23 血中放射能濃度推移 (µg/g)

② 分布

主要組織中の残留放射能濃度は表24に示されている。

臓器中濃度は、低濃度ばく露群で 0.3%TAR 以下、高濃度ばく露群で 0.1%TAR 以下であった。(参照 1、2)

ばく露量	性別	投与 24 時間後
100	雄	肺(1.78)、肝臓(1.23)、腎臓(0.85)、脾臓(0.54)、カーカス(0.48)、脂肪(0.38)
100 ppm	雌	肝臓(1.05)、腎臓(0.78)、肺(0.67)、脾臓(0.57)、カーカス(0.33)、脂肪(0.23)
1,000 ppm	雄	肺(3.48)、肝臓(3.35)、腎臓(2.87)、脂肪(1.73)、カーカス(1.63)、脾臓(1.49)
	雌	肺(2.86)、肝臓(2.67)、腎臓(2.59)、脾臓(1.43)、脂肪(1.63)、カーカス(1.33)

表 24 主要組織中の残留放射能濃度 (ug/g)

③ 排泄

投与後24時間の尿及び糞中排泄率は表25に示されている。 尿及び糞中への排泄は少なかった。(参照1、2)

a: T_{max}付近

² 組織・臓器を取り除いた残渣のことをカーカスという(以下同じ。)。

表 25 尿及び糞中排泄率 (%TAR)

ばく記		100	ppm	1,000 ppm		
性別		雄	雄 雌		雌	
	尿	3.37	2.31	1.51	0.86	
投与後	糞	0.96	0.48	0.20	0.15	
24 時間	尿+糞	4.33	2.80	1.72	1.01	
	カーカス	1.44	1.05	0.54	0.35	

(2) 急性毒性試験

1-MCP(製剤及び原体)のラットを用いた急性毒性試験(経皮投与及び吸入ばく露)が実施された。

結果は表 26 に示されている。 (参照 1、10、12)

表 26 急性毒性試験概要(経皮投与及び吸入ばく露、製剤及び原体)

投与経路	動物種	LD ₅₀ (mg	/kg 体重)	観察された症状	
汉 子腔的	性別・匹数	雄	雌	観祭された症仏	
経皮 a	SD ラット	>5,000	>5,000	症状及び死亡例なし	
栓皮 a	一群雌雄各5匹	(>165)	(>165)	症状及び死亡例なじ	
пТА Т. b.	SD ラット	LC ₅₀ (mg/L)	岸华亚邓亚土周 (大)	
吸入 b	一群雌雄各5匹	>2.5°	>2.5°	症状及び死亡例なし	

():有効成分換算值

(3) 眼・皮膚に対する刺激性及び皮膚感作性試験

1-MCP 3.3%くん蒸剤の NZW ウサギ(雄)を用いた眼刺激性試験及び皮膚刺激性試験が実施された結果、軽度の眼刺激性及び弱い皮膚刺激性が認められた。

1-MCP 3.3% くん蒸剤の Hartley モルモット(雌)を用いた皮膚感作性試験 (Maximization 法) が実施された結果、皮膚感作性は認められなかった。 (参照 1、13~15)

(4) 90 日間亜急性吸入毒性試験 (ラット)

SD ラット (一群雌雄各 10 匹) を用いた吸入ばく露 (0,20,100 及び 1,000 ppm: 平均実測濃度及び平均検体摂取量は表 27 参照、6 時間/日、5 日/週)による 90 日間亜急性吸入毒性試験が実施された。

 $a:1 ext{-MCP/}\alpha ext{-}$ シクロデキストリン複合体(有効成分 3.3%を含むくん蒸剤)をミネラル油で湿らせ、 剃毛した肩、背部皮膚に 24 時間塗布した。

b:1-MCPを4時間ばく露(気体)

c:試験期間中の検体摂取量を精緻に計算すると 47.7 mg/kg 体重/4 時間となる。

表 27 90 日間亜急性吸入毒性試験 (ラット) の平均実測濃度及び平均検体摂取量

ばく露群	20 ppm		100 ppm		1,000 ppm	
/よく路群	雄	雌	雄	雌	雄	雌
平均実測濃度(ppm、v/v)	24		107		1,030	
平均実測濃度(mg/m³)	53.9		240		2,320	
平均体重(g)	408	246	427	250	418	250
検体摂取量 1)(mg/kg 体重/日)	9.51	15.8	40.5	69.1	400	668
吸収率を考慮した検体摂取量 ²⁾ (mg/kg 体重/日)	0.95	1.58	4.05	6.91	40.0	66.8

¹⁾ ラットの平均呼吸量 0.2 L/min、1 気圧、20℃で理想気体式に従うと仮定

各ばく露群で認められた主な毒性所見は表 28 に示されている。

対照群の雄で 5 週目及び 9 週目にそれぞれ 1 例(計 2 例)が死亡したが、死亡と相応する病理組織学的変化等は認められなかった。100 ppm ばく露群の雄 1 例がばく露 6 週で出血性膀胱炎により死亡したが、同一群及び他のばく露群では膀胱炎が認められていないため、偶発的発生であると考えられた。

1,000 ppm ばく露群の雄で認められた脳絶対重量の減少は、軽度であること、神経毒性を示唆する所見が認められなかったこと及び病理組織学的検査で異常が認められなかったことから、検体ばく露の影響とは考えられなかった。

100 ppm ばく露群の雌 1 例にリンパ腫が認められたが、検体ばく露の影響とは考えられなかった。

本試験において、100 ppm 以上ばく露群の雌雄で赤脾髄(脾臓)のヘモジデリン沈着増加等が認められたことから、無毒性量は雌雄とも 20 ppm (雄:0.95 mg/kg体重/日、雌:1.58 mg/kg体重/日)であると考えられた。(参照 1、16)

²⁾ 動物体内動態試験の結果から、体内吸収率は10%と推定された。

表 28 90 日間亜急性吸入毒性試験 (ラット) で認められた毒性所見

ばく露群	雄	雌
1,000 ppm	・流涎 ・MCV 及び WBC 増加 ・RBC、Hb 及び Ht 減少 ・T.Bil 及び T.Chol 増加 ・肝比重量増加 ・小葉中心性肝細胞肥大及び肝細胞 空胞化 ・脾髄外造血亢進	・流涎 ・MCV 増加 ・RBC、Hb 及び Ht 減少 ・T.Bil、T.Chol 及び TG 増加 ・肝及び脾比重量増加 ・腎絶対重量増加 ・腎皮質尿細管上皮細胞の核肥大、色素沈着及び核肥大を伴う尿細管細胞壊死 ・小葉中心性肝細胞肥大 ・脾髄外造血亢進
100 ppm 以上	・腎皮質尿細管上皮の好酸性小体の 増加 ・赤脾髄のヘモジデリン沈着増加及 びうっ血	・赤脾髄のヘモジデリン沈着増加及びうっ血
20 ppm	毒性所見なし	毒性所見なし

10. 海外における評価

(1) EPA

EPA は、作物残留試験の結果から、1-MCP は食品中にほとんど残留せず、残留 基準値 (MRL) を設定する必要がないと判断している。したがって、許容一日摂 取量 (ADI) 及び急性参照用量 (ARfD) は設定されていない。 (参照 25)

(2) EFSA

EFSA は、ラットを用いた 2 世代繁殖試験及びイヌを用いた 90 日間亜急性毒性 試験における無毒性量 3.8 及び 4.1 mg/kg 体重/日を根拠に、通常の安全係数 100 に加え、短期試験であることによる追加の安全係数(2)を考慮し、合計 200 で除した 0.02 mg/kg 体重/日を ADI と設定している。

また、イヌを用いた 90 日間亜急性毒性試験を根拠資料として、0.12 mg/kg 体重(安全係数:100)をARfDと設定している。

また、EFSA は、原体に不純物として含有する 1-クロロ-2-メチルプロペン (1-CMP) 及び 3-クロロ-2-メチルプロペン (3-CMP) は遺伝毒性発がん物質であるが、既存の発がん性に関するデータにベンチマークドーズ法を適用した結果、MOE が大きいことなどから、安全上の懸念は低いとしている。 (参照 26、35)

(3) HC

HC は、1-MCP の MRL を定量限界 (0.01 mg/kg) とし、毒性データに基づき ADI 及び ARfD については設定不要と判断した。 (参照 51)

(4) APVMA

APVMA は、食品への残留を介したばく露が低いことから ADI 及び ARfD を設定しなかった。 (参照 52、53)

Ⅲ. 食品健康影響評価

参照に挙げた資料を用いて、農薬「1-MCP」の食品健康影響評価を実施した。第 3版の改訂に当たっては、厚生労働省から、植物代謝試験(りんご)、作物残留試験 (海外:アボカド)の成績等が新たに提出された。

評価に当たっては、以下の点に留意した。すなわち、1-MCPの有効成分は気体であり、1,000 ppm 以上では爆発の危険があることから、原体の経口又は経皮投与及び長期の試験は技術的に困難である。また、作物残留試験の結果から残留値は非常に低く、高濃度による長期ばく露は起こり難いと判断された。したがって、1-MCPの食品健康影響評価は、急性毒性試験、90日間亜急性吸入毒性試験、発生毒性試験、遺伝毒性試験、刺激性試験及び感作性試験、並びに1-MCP/α-シクロデキストリン複合体を用いた急性毒性試験、90日間亜急性毒性試験及び2世代繁殖試験成績に基づき実施した。

14Cで標識した 1-MCP のりんごを用いた植物代謝試験の結果、果皮における残留 濃度が最も高かったが、各部位(果皮、芯及び果肉)における残留濃度はいずれも 微量であり、1-MCP のりんごにおける残留性は極めて小さいと考えられた。

1-MCP を分析対象化合物とした作物残留試験の結果、国内における 1-MCP の最大残留値はりんご(ガーラ種)の $9.11~\mu g/kg$ であった。海外における 1-MCP の最大残留値は、アボカド(果皮)の $22.8~\mu g/kg$ 、可食部においてはアボカド(果肉)の $3.76~\mu g/kg$ であった。

14C で標識した 1-MCP のラットを用いた動物体内動態試験の結果、吸入ばく露試験では、ばく露時間約 4 時間で血中濃度は最高濃度に達したが、ばく露終了後減少した。ばく露された 1-MCP の少量が吸収され、主に肺、肝臓、腎臓等に分布した。また、ほとんど代謝されず排気され、尿及び糞中への排泄は少なかった。1-MCP/αシクロデキストリン複合体を用いた経口投与試験では、吸収率は少なくとも 88.8%~94.9%であった。残留放射能は、肝臓、腎臓、甲状腺、脾臓、副腎等で比較的高く認められたが、投与 96 時間後には顕著に減少した。投与放射能は、単回投与群で投与後 96 時間に 96.1%TAR~101%TAR、反復投与群で初回投与後 192 時間に 98.3%TAR~98.8%TAR が排泄され、主に呼気中に 14CO2 又は揮発性有機物として排泄された。尿及び糞中において未変化の 1-MCP は認められず、尿中に M1、M2、M3、M4、M5、M6 及び M7 の代謝物が認められた。

各種毒性試験結果から、1-MCP 投与による影響は、主に体重(増加抑制)、赤血球数減少等並びに肝及び脾のヘモジデリン沈着増加であった。繁殖能に対する影響、催奇形性及び遺伝毒性は認められなかった。

植物代謝試験の結果から、1-MCP は速やかに代謝され生体構成成分中に取り込まれると考えられ、また、作物残留試験の結果から、可食部における残留値は僅かであると考えられることから、農産物中のばく露評価対象物質を 1-MCP (親化合物のみ)と設定した。

各試験における無毒性量等は表29に示されている。

食品に残留する農薬の安全性を評価するための試験は、原則として経口投与で行われるが、本剤の有効成分が気体であるという物理化学的性質から原体の経口投与が困難なため、原体の吸入ばく露による試験又は1-MCP/α-シクロデキストリン複合体を用いた経口投与による試験が実施された。なお、長期投与試験及び非げっ歯類を用いる発生毒性試験の成績がいずれも提出されていないことから、食品に残留する農薬の安全性を評価するために必要な試験項目を充足しておらず、食品安全委員会は、経口ばく露による厳密な意味でのADI及びARfDを求めることはできないと考えた。

しかしながら、作物残留試験の結果、1-MCPの残留量は極微量であり、農薬登録 又は申請された使用方法で適切に使用される限りにおいては食品を通じてヒトの健 康に影響を与える可能性は極めて低いと考えた。

なお、各試験で得られた無毒性量の最小値は、ラットを用いた 90 日間亜急性吸入毒性試験における 0.95 mg/kg 体重/日であったが、90 日間亜急性毒性試験は1-MCP/α-シクロデキストリン複合体を用いて経口投与により実施されており、当該試験における無毒性量をラットを用いた 90 日間亜急性毒性試験における無毒性量とするのが妥当と考えられた。各試験で得られた無毒性量の最小値は、イヌを用いた 90 日間亜急性毒性試験及びラットを用いた 2 世代繁殖試験の 4.1 mg/kg 体重/日であり、敢えて ADI を算出するとすれば、安全係数 1,000(種差:10、個体差:10、短期試験のため:10)で除した 0.0041 mg/kg 体重/日が得られる。また、1-MCP の単回経口投与等により生ずる可能性のある毒性影響は認められないと考えられた。

<参考>

<EFSA、2018年>

ADI 0.02 mg/kg 体重/日

(動物種)イヌ(期間)90 日間(投与方法)混餌

(無毒性量) 4.1 mg/kg 体重/日

(ADI 設定根拠資料②) 2 世代繁殖試験

(動物種)ラット(期間)2世代(投与方法)混餌

(無毒性量) 3.8 mg/kg 体重/日

(安全係数) 200

ARfD 0.12 mg/kg 体重

(ARfD 設定根拠資料) 亜急性毒性試験

(動物種) イヌ

(期間) 90 日間

(投与方法) 混餌

(無毒性量) 12 mg/kg 体重/日

(安全係数) 100

<EPA、2002年>

cRfD 及び aRfD

設定されていない*

*: 作物残留試験の結果から、1-MCP は食品中にほとんど残留せず残留基準値(MRL)を設定する必要がないと判断され、cRfD 及び aRfD は設定されなかった。

<HC、2022年>

ADI 及び ARfD

設定されていない*

*:作物残留試験の結果から、1-MCP は食品中にほとんど残留しないこと、また、毒性データに基づき ADI 及び ARfD は設定されなかった。

<APVMA、2003年>

ADI 及び ARfD

設定されていない*

*: ADI 及び ARfD を設定するための情報は不足しているが、登録された使用方法から食品への残留を介したばく露は低いことから ADI 及び ARfD は設定されなかった。

(参照 25、35、51~53)

表 29 各試験における無毒性量等

		投与量	無毒性量	最小毒性量	
動物種	試験	(mg/kg 体重/日)	(mg/kg 体重/日)	(mg/kg 体重/日)	備考 1)
ラット	90 日間亜急性	0(基礎飼料)、	雄:477 [22.4]	雄:1,290 [60.6]	雌雄:赤脾髄(脾
	毒性試験	0(α-シクロデキ	雌:564 [26.5]	雌:1,510 [71.1]	臓)ヘモジデリン
	(混餌投与)	ストリン)、			沈着増加等
		1,500、7,500、			
		20,000 ppm			
		雄:0、0、4.6、			
		22.4、60.6			
		雌:0、0、5.3、			
		26.5、71.1			
	2世代繁殖試験	0(基礎飼料)、	親動物:	親動物	親動物:
	(混餌投与)	0(α-シクロデキ	P雄:90[4.1]	P雄: 456 [20.7]	雌雄:体重増加
		ストリン)、	P雌:105 [4.8]	P雌: 540 [24.5]	抑制及び摂餌量
		1,500、7,500、	F ₁ 雄:110 [5.0]	F ₁ 雄:547 [24.8]	減少等
		20,000 ppm	F ₁ 雌:116 [5.3]	F1雌:567 [25.7]	
					児動物:
		P雄:0、0、90、	児動物:	児動物:	雌雄:毒性所見
		456、1,190	F ₁ 雄:1,190	F ₁ 雄:一	なし
		P雌:0、0、105、	[54.0]	F ₁ 雌:一	
		540、1,390	F ₁ 雌:1,390	F ₂ 雄:-	(繁殖能に対する
		F ₁ 雄:0、0、110、	[63.1]	F ₂ 雌:一	影響は認められ
		547、1,440	F ₂ 雄:1,440		ない)
		F ₁ 雌:0、0、116、	[65.4]		
		567、1,540	F ₂ 雌:1,540		
			[69.9]		
	発生毒性試験	0、100、300、	母動物:5.72	母動物:17.6	母動物:脾暗色
	(吸入ばく露)	1,000 ppm	胎児:54.9	胎児:一	化
					胎児:毒性所見
		0, 5.72, 17.6,			なし
		54.9			
					(催奇形性は認め
	00 日間玉色丛	0 90 100	## . O OF	## . 4 OF	られない)
	90 日間亜急性	0, 20, 100,	雄: 0.95	雄: 4.05	雌雄:赤脾髄(脾
	吸入毒性試験	1,000 ppm	雌:1.58	雌:6.91	臓)のヘモジデリン沈着増加等
		雄:0.95、4.05、			~仏 復増加守
		, , , , , ,			
		40.0			
		雌:1.58、6.91、			
		66.8		<u> </u>	

動物種	試験	投与量 (mg/kg 体重/日)	無毒性量 (mg/kg 体重/日)	最小毒性量 (mg/kg 体重/日)	備考 1)
イヌ	90 日間亜急性毒性試験(混餌投与)	0(基礎飼料)、 0(α-シクロデキ ストリン)、 2,500、7,500、 20,000 ppm 雄:0、0、95、 271、771 雌:0、0、91、 270、685	雄: 95 [4.3] 雌: 91 [4.1]	雄: 271 [12.3] 雌: 270 [12.3]	雌雄:肝細胞褐 色色素沈着等

注)吸入ばく露における無毒性量及び最小毒性量における検体摂取量は、ばく露期間中の平均実測濃度を基に、ラットの平均呼吸量(0.2 L/min、1 気圧、20℃で理想気体式に従うと仮定)及び平均体重から換算された。さらに、経気道吸収率は、動物体内動態試験における組織残留率並びに尿及び糞中排泄率から推定された 10%を用いた。

1):最小毒性量で認められた主な毒性所見を記した。

-:最小毒性量は設定できなかった。

[]:有効成分換算值

<別紙1:代謝物/分解物略称>

記号	化学名
M1	(2S,1R)-2-methylcyclopropane-1-sulfonic acid and $(2R,1S)$ -2-methylcyclopropane-1-sulfonic acid
M2	(S)-2-acetamino-3-(3-oxobutylthio)propanoic acid
M3	(2S)-3- $[(2R)$ -2-acetamido-2-carboxyethyl]sulfanyl-2-methylpropanoic acid
M4	(S)-2-acetoamino-3-(R)-3-hydroxybutylthio)propanoic acid and (S)-2-acetoamino-3-((S)-3-hydroxybutylthio)propanoic acid
M5	(S)-2-acetoamino-3-((S)-hydroxy-2-methylpropylthio)propanoic acid and (S)-2-acetoamino-3-((R)-3-hydroxy-2-methylpropylthio)propanoic acid
M6	(S)-2-acetoamino-3-(2-methylallylthio)propanoic acid
M7	glucuronic acid

<別紙2:検査値等略称>

略称	名称
AFIP	Armed Forces Institute of Pathology
A T /T\	アラニンアミノトランスフェラーゼ
ALT	[=グルタミン酸ピルビン酸トランスアミナーゼ (GPT)]
AUC	薬物濃度曲線下面積
APVMA	オーストラリア農薬・動物用医薬品局
C_{max}	最高濃度
DMSO	ジメチルスルホキシド
EFSA	欧州食品安全機関
EPA	米国環境保護庁
Hb	ヘモグロビン(血色素量)
HC	カナダ保健省
Hgprt	ヒポキサンチンーグアニンホスホリボシルトランスフェラーゼ
Ht	ヘマトクリット値
MCHC	平均赤血球血色素濃度
MCV	平均赤血球数容積
PHI	最終使用から収穫までの日数
RBC	赤血球数
Ret	網状赤血球数
SDH	ソルビトール脱水素酵素
$T_{1/2}$	消失半減期
TAR	総投与(処理)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
TG	トリグリセリド
T_{max}	最高濃度到達時間
TRR	総残留放射能
WBC	白血球数

<別紙3:作物残留試験成績(国内)>

作物名	処理時間 (時間)			処理後時間		残留値(μg/	(kg)					
(品種名) 実施年			処理温度	(時間)	最高値	平均値	品種/温度別平均					
				4	4.36	3.76						
				26	4.17	3.56						
10 / >			0~3℃	50	3.95	2.63	3.10					
りんご (レッド	2	4		74	3.70	2.44						
デリシャス)				144	4.02	3.09						
2001年			室温	0	5.98	4.68	4.20					
2001 +			半恒	48	5.32	3.72	4.20					
	補足 7日	7 🗆	0~3℃	0	6.79	6.66						
		0.030	48	7.75	7.20							
				24	5.55	4.73						
りんご		24	0~3℃	168	6.39	4.79	4.89					
(ガーラ)	2		4		336	5.94	5.15					
2001年			室温	24	7.71	4.18	5.40					
		出価	192	9.11	6.63	0.40						
りんご			0~3℃	0	5.26	3.77	3.08					
(グラニー	24		9.4	9.4	9.4	94	1	0 - 3 C	48	3.31	2.39	5.00
スミス)			室温	0	7.37	5.44	4.88					
2001年			主1皿	48	5.29	4.32	4.88					
りんご			0∼3℃	0	4.12	3.59	2.79					
りんこ (ふじ)	2	1	0 -3 C	48	3.11	2.00	2.10					
2001年		4	室温	0	3.62	3.52	3.68					
4001 '+				48	4.74	3.84	3.68 					

[・] $^{14}\text{C-1-MCP}$ を 3.16%の濃度で包接した α -シクロデキストリンに水を加えて発生させた $^{14}\text{C-1-MCP}$ を内容積 $99\ L$ のアルミニウム製容器内に置いたりんごに $1,200\ \mu g$ ai/kg の濃度で 24 時間ばく露した。

[・]処理後は、低温(0~3℃)で保存した。

[・]平均値は、試料位置(上段、中段、下段)の各値の平均。

[・]品種/温度別平均残留値は、品種、処理温度毎の各値の平均。

<別紙4:作物残留試験成績(国内)>

					I	43 57 57 57 57 57 57 57 57 57 57 57 57 57	(m/1- : \				
作物名	₹4. ₩Λ	使用量	回数(回)	PHI (目)	ルかハ	残留値(4亡 1 / 11			
(栽培形態)	試験				公的分析機関 社内分析機関 1-MCP						
[分析部位]	ほ場数				日立は			T 14 14			
実施年度) +++++/:\			最高値	平均値	最高値	平均値			
ばれいしょ		くん蒸剤(3.3%)									
(露地)	1	有効成分1,000 ppb	1	11	< 0.01	< 0.01					
2018年度	1	$2.24~\mathrm{mg/m^3}$		11	\0.01	\0.01					
2010年度		24時間くん蒸									
-i'11		くん蒸剤(0.63%)									
ブロッコリー	_	有効成分1,000 ppb		_	0.01	0.01					
(露地)	1	$2.25~\mathrm{mg/m^3}$	1	1	< 0.01	< 0.01					
2021年度		24時間くん蒸									
りんご		くん蒸剤(3.3%)									
(露地)	1						< 0.01	< 0.01			
****		有効成分1,200 ppb	4	4							
[全果実]	1	2.68 mg/m^3					< 0.01	< 0.01			
2009年度		24時間くん蒸				ı					
なし		くん蒸剤(0.14%)									
(露地)	1	有効成分1,000 ppb	1	1	<0.01	<0.01					
[全果実]	1	$2.24~\mathrm{mg/m^3}$	1	1	<0.01	<0.01					
2006年度		24時間くん蒸									
すもも		くん蒸剤(3.3%)									
(露地)		有効成分1,000 ppb									
[全果実]	1	1	1	1	2.24 mg/m ³	1	6	< 0.01	< 0.01	/	
2013年度		2.24 mg/m ³ 24時間くん蒸									
かき		くん蒸剤(3.3%)									
(施設)	1	1	有効成分1,000 ppb	1	2	< 0.01	< 0.01	_			
[へた以外の果実]			1	1	Ŧ	1	$2.24~\mathrm{mg/m^3}$	_	_	10.01	10.01
2006年度		24時間くん蒸									
		くん蒸剤(3.3%)									
		有効成分1,186 ppb					10.01	10.01			
		2.62 mg/m^3					< 0.01	< 0.01			
		14時間くん蒸									
	1	くん蒸剤(3.3%)									
		有効成分626 ppb									
バナナ					/		< 0.01	< 0.01			
		1.40 mg/m³									
(露地) [全果実] 2012年度		14時間くん蒸	1	1							
		くん蒸剤(3.3%)									
		有効成分1,203 ppb					< 0.01	< 0.01			
		2.69 mg/m^3					0.01	0.01			
	1	14時間くん蒸									
	1	くん蒸剤(3.3%)									
		有効成分595 ppb					ZO 01	ZO 01			
		1.33 mg/m^3					< 0.01	< 0.01			
		14時間くん蒸									
L	<u> </u>	T T 1 101 / 101//	<u> </u>		<u> </u>		<u> </u>	<u> </u>			

作物名 (栽培形態) [分析部位]	試験 ほ場数	使用量	回数 (回)	PHI (目)	残留值(公的分析機関	社内分	析機関
キウイフルーツ (露地) [全果実] 2012年度	1	くん蒸剤(3.3%) 有効成分1,000 ppb 2.24 mg/m ³ 24時間くん蒸	1	15	1-W	<0.01	<0.01

^{/:}分析されず ・全てのデータが定量限界未満の場合は定量限界値の平均に<を付して記載した。

<別紙5:作物残留試験成績(海外)>

作物名	処理時間		処理後時間	残留值(μg/kg)			
[分析部位] 実施年	(時間)	処理温度	(時間)	最高値	平均値	分析部位 平均	
アボカド [果肉]			0	3.76	2.57	1.83	
2003年	177	6°C	48	1.32	1.32 1.10	1.00	
アボカド [果皮]	17	60	0	22.8	13.3	12.0	
2003年			48	19.0	14.5	13.9	

- ・ ¹⁴C-1-MCP を 2.56%の濃度で包接した α-シクロデキストリンに水を加えて発生させた ¹⁴C-1-MCP を内容積 99 L のアルミニウム製容器内に置いたアボカド (250 kg/m³) に 0.5 μg/L の濃度で 17 時 間ばく露した。
- ・処理後は、低温 (6℃) で保存した。 ・平均値は、試料位置(上段、中段、下段)の各値の平均。
- ・分析部位平均残留値は、分析部位毎の平均。

<参照>

- 1 農薬抄録 1-メチルシクロプロペン: ローム・アンド・ハース ジャパン株式会社、2005 年、一部公表
- 2 ¹⁴C 標識 1-メチルシクロプロペンを用いたラットにおける動態試験(GLP 対応):Rohm and Hass Company、2002 年、未公表
- 3 りんごにおける ¹⁴C -1-メチルシクロプロペンの分布試験: Rohm and Hass Company、2002年、未公表
- 4 種々の pH における 1-メチルシクロプロペンの加水分解性測定 (GLP 対応): RCC Ltd.、2002 年、未公表
- 5 大気中での光酸化による 1-メチルシクロプロペンの分解の評価 ATKINSON によるモデル計算: RCC Ltd.、2001 年、未公表
- 6 作物残留試験(りんご)(GLP 対応): Rohm and Hass Company、2001 年、未公表
- 7 作物残留試験(なし):残留農薬研究所、2006年、未公表
- 8 作物残留試験(かき):残留農薬研究所、2006年、未公表
- 9 1-メチルシクロプロパンにおける薬理試験 (GLP 対応): MB Laboratories、2006 年、未公表
- 10 ラットにおける急性吸入毒性試験(GLP 対応): Rohm and Hass Company、2001 年、未公表
- 11 ラットにおける急性経口毒性試験(GLP 対応): Rohm and Hass Company、2001年、未公表
- 12 ラットにおける急性経皮毒性試験(GLP 対応): Rohm and Hass Company、2001 年、未公表
- 13 ウサギを用いた眼刺激性試験(GLP 対応): Rohm and Hass Company、2001 年、 未公表
- 14 ウサギを用いた皮膚激性試験(GLP 対応): Rohm and Hass Company、2001 年、 未公表
- 15 モルモットを用いた皮膚感作性試験 (GLP 対応): Rohm and Hass Company、2001 年、未公表
- 16 ラットを用いた 3 ヶ月間反復吸入毒性試験 (GLP 対応): Rohm and Hass Company、2001 年、未公表
- 17 ラットにおける催奇形性試験(GLP 対応): Rohm and Hass Company、2001 年、 未公表
- 18 細菌を用いる復帰突然変異試験(GLP 対応): Rohm and Hass Company、2001 年、未公表
- 19 チャイニーズハムスターCHO HGPRT 細胞を用いた *in vitro* 前進突然変異試験 (GLP 対応): Rohm and Hass Company、2001 年、未公表

- 20 ヒト由来末梢血リンパ球を用いた *in vitro* 染色体異常試験 (GLP 対応): Rohm and Hass Company、2001 年、未公表
- 21 マウスを用いた小核試験(GLP 対応): Rohm and Hass Company、2001 年、未 公表
- 22 食品健康影響評価について(平成 17 年 8 月 23 日付け厚生労働省発食安第 0823002 号)
- 23 1-メチルシクロプロペンの食品健康影響評価に係る追加資料要求について:追加資料要求事項に対する回答書:ローム・アンド・ハース ジャパン株式会社、2006 年、 未公表
- 24 1-メチルシクロプロペン 追加資料要求事項に対する回答書:ローム・アンド・ハース ジャパン株式会社、2009 年、未公表
- 25 US EPA: Federal Register/Vol.67, No.144, 48796~48800(2002)
- 26 EFSA①: Scientific Report (2005) 30, 1-46, Conclusion on the peer review of 1-methylcyclopropene (2005)
- 27 食品健康影響評価の結果の通知について(平成 21 年 12 月 17 日付け府食第 1166 号)
- 28 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件 (平成 22 年厚生労働省告示第 381 号)
- 29 食品健康影響評価について(平成 30 年 11 月 21 日付け厚生労働省発生食 1121 第 3 号)
- 30 農薬抄録 1-メチルシクロプロペン: ローム・アンド・ハース・ジャパン株式会社、 2015 年、未公表
- 31 1-メチルシクロプロペン (スマートフレッシュ) すもも作物残留試験 (GLP 対応): 一般財団法人新日本検定協会、2013 年、未公表
- 32 Magnituide of Residues of 1-Methylcyclopropene (1-MCP) in Bananas (GLP 対 応): AgroFresh, Inc. 2012 年、未公表
- 33 Magnituide of Residues of 1-Methylcyclopropene (1-MCP) in Kiwi Frut Treated With SmartFreshTM 3.3% Technology in Japan (GLP 対応): AgroFresh, Inc. 2013 年、未公表
- 34 平成 17~19 年の食品摂取頻度・摂取量調査(薬事・食品衛生審議会食品衛生分科会農薬・動物用医薬品部会資料、2014年2月20日)
- 35 EFSA②: Peer review of the pesticide risk assessment of the active substance 1-methylcyclopropene, EFSA Journal 16: 5308, 2018.
- 36 A 90-Day Oral (Dietary) Toxicity Study of Manufacturing Use Product –HAIP (1-Methylcyclopropene) in Beagle Dogs (GLP 対応): Charles River Laboratories、2016 年、未公表
- 37 Manufacturing Use Product —HAIP (1-Methylcyclopropene): A Dietary Two-Generation Reproductive Toxicity Study in Crl:CD (SD) Rats (GLP 対応):

- Charles River Laboratories、2017年、未公表
- 38 農薬抄録 1-メチルシクロプロペン: ローム・アンド・ハース・ジャパン株式会社、 2019 年、一部公表
- 39 Toxicokinetics and Metabolism of 14C-1-MCP (1-methylcyclopropene) in Rats (GLP 対応) : XenoBiotic Laboratories, Inc.、2011 年、未公表
- 40 作物残留試験(ばれいしょ):一般財団法人新日本検定協会、2019年、未公表
- 41 A 90-DAY (DIETARY) TOXICITY STUDY OF MANUFACTURING USE PRODUCT-HAIP (1-METHYLCYCLOPROPENE) IN RATS (GLP 対応): WIL Research Laboratories, LLC. 2012 年、未公表
- 42 食品健康影響評価に係る追加資料等の提出について: 「1-メチルシクロプロペンの 追加資料要求事項」に対する回答書: アグロフレッシュ・ジャパン合同会社、2019 年、未公表
- 43 食品健康影響評価の結果の通知について(令和2年9月1日付け府食第582号)
- 44 食品、添加物等の規格基準(昭和34年厚生省告示第370号)の一部を改正する件(令和3年8月31日付け令和3年厚生労働省告示第323号)
- 45 食品健康影響評価について(令和5年3月8日付け厚生労働省発生食0308第6号)
- 46 農薬抄録 1-メチルシクロプロペン(植物成長調整剤): アグロフレッシュ・ジャパン合同会社、2022 年、一部公表
- 47 インポートトレランス申請資料 1-メチルシクロプロペン: アグロフレッシュ・ジャパン合同会社、2023 年、未公表
- 48 Determination of total residues in apples after multiple applications of [14C]1-methylcyclopropene (1-MCP) (GLP 対応): XenoBiotic Laboratories, Inc.、2017 年、未公表
- 49 Determination of total residues in apples after a single application of [14C]1-methylcyclopropene (1-MCP) at 5 ppm (GLP 対応): WuXi AppTec、2018 年、未公表
- 50 ¹⁴C-1-Methylcyclopropene (1-MCP) avocado residue study (GLP 対応): AgroFresh, Inc. A Rohm and Haas company、2004 年、未公表
- 51 HC: Proposed Re-evaluation Decision: 1-Methylcyclopropene and Its Associated End-use Products、2022 年
- 52 APVMA①: Acceptable daily intakes (ADI) for agricultural and veterinary chemicals used in food producing crops or animals、2022 年
- 53 APVMA②: Acute reference doses (ARfD) for agricultural and veterinary chemicals used in food producing crops or animals、2022 年