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A comparison of focused score tests and Bayesian
hierarchical models for detecting spatial disease clustering

Elizabeth G. HiLL, Andrew S. ALLEN and Lance A. WALLERY

We compare performance of two approaches for detecting disease clustering (spatially localized
increases in disease rates) in maps of incidence data. The first is a score test for detecting clustering
arcund a prespecified source of suspected increased risk {c.g. a hazardous wastes site). This method
is simple to calculate, and based on a hypothesis-testing paradigm. The second is based on estimates
of region-specific standardized morbidity ratios (SMRs) from a hierarchical Bayesian model with
spatial random effects. This method involves greater computational effort than the score test, but
provides much more inferential output than a simple ‘reject/fail to reject the null hypothesis’
conclusion, namely model-based estimates of SMRs for each region. We contrast the methods’
performance in a frequentist manner, comparing the power of the score test to the proportion of
times the posterior median SMR exceeds an extreme quantile of the sampling distribution of this
estimate in the absence of clustering. We find the Bayesian approach achieves comparable fre-
quentist performance to the scare test, and seems to provide greater discriminatory accuracy in

determining the center of a true cluster.

1 Introduction

Analysis of spatial patterns of incident cases of djs-
ease plays a key role in exploratory epidemiologic inves-
tigations and disease surveillance. Typically, investiga-
tors assess whether the observed cases are significantly
clustered within a heterogeneously distributed popula-
tion. Numerous hypothesis tests are available to detect
clustering, providing the investigator with simple mea-
sures that quantify the significance of the clustering
observed in the data. That is, the tests quantify whether
the observed amount of clustering is more than that
expected by chance. Lawson and Wallex?, Elliott ef «f?,
and Marshall® review these methods.

Besag and Newell* distinguish between ‘Tocused’ and
‘general’ tests to detect clustering. The distinction
between the two is that the former concentrate on
regions around one or more foci (e.g. a hazardous waste
site or contaminated well) thought to be related a priori
to increased disease incidence, while the latter are
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applied to geographic regions with no prior belief as to
the putative causes of disease. Waller and Lawson®
compare the power of focused tests to detect clustering,
and Tango® compares the power of both focused and
general tests,

In addition to simple tests of clustering,
epidemiclogists often wish to compare disease rates
between regions (e, census enumeration districts)
within a study area. Throughout this paper, we use the
term ‘region’ to denote small administrative districts
that subdivide the study area. Unfortunately, rare dis-
ease rate estimates are difficult to compare directly due
to the variability in the size of the denominator. Regions
with small at-risk population sizes generate rate esti-
mates with large variances. Often these estimates
appear highly discrepant from the overall disease rate.
Recently, Bayesian models have gained popularity in
mapping disease rates due to their characteristic ‘borr-
owing-of-strength’. That is, regicnal rate estimates
incorporate information from neighboring regions,
resulting in smoothed posterior estimates of the rate of
disease. Compared to the standard ‘reject/fail to reject’
conclusion from statistical hypothesis tests, these
Bayesian hierarchical models provide a wealth of infor-
mation about the entire study region. Rather than
attempting to quantify clustering by a single measure,
posterior parameter estimates provide a mappahle pic-
ture of how the disease is clustered. This increase in
information requires increased computational intensity,
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as outlined in Section 3.3. Clayton and Bernardinelli”
and Best ef al® summarize current Bavesian models
used to analyze spatially-referenced health and expo-
sure data.

The purpose of this paper is to compare frequentist
(hypothesis-testing) and Bayesian methods in their abil-
ity to detect clustering of a rare disease. Typically such
comparisons require an assessment of how often a given
method detects clustering when clustering is known to
exist (the power of the test). In the hypothesis-testing
paradigm, if the theoretical distribution of the test
statistic is known, a critical value for a one-sided upper
-tail test is equal to the (1—a) 1009 quantile of the
distribution under the null hypothesis (no clustering}. An
exact measure of power is obtained as the probability of
the test statistic exceeding the critical value under a
specified alternative hypothesis (modei of clustering).
Often the sampling distribution of the test statistic is
unknown or difficult to calculate, making exact power
calculations impossible. However, if simulating the data
under the null hypothesis is relatively easy (as is usually
the case with disease clustering studies), simulation
{(Monte Carlo) studies offer a viable alternative to pro-
vide reliable estimates of power. This entails repeatedly
simulating data under the null hypothesis and obtaining
the value of the test statistic for each repetition, result-
ing in an empirical estimate of its sampling distribution
under the null hypothesis. By simulating the data
repeatedly under a specified alternative (clustering
model}, we estimate power by the proportion of data
sets for which the resulting value of the test statistic
exceeds the (1—a) 100#: percentile of the empirical
distribution obtained under the null hypothesis.

Bayesian methods are framed in a modeling rather
than hypothesis-testing paradigm and do not easily
offer ‘detect/not detect’ conclusions. To investigate
performance, we simulate clustering using a well-known
Scottish lip-cancer data set® and distribute the observed
536 cases among Scotland’s 56 districts by specifying an
exposure of 1.0 at an artificial focus and allowing the
exposure to decrease to 0.0 with increasing distance
from the focus. We propose a measure of ‘power’ for the
Bayesian approach based on the empirical distribution
of the median standardized mortality ratic (SMR)
obtained from the posterior distribution of SMR in each
region, simulated under a specification of no increased
relative risk. In effect, we use the estimated SMR as a
summary index of clustering and assess its performance
in a manner similar to a hypothesis test using the esti-
mated SMR as a test statistic. We then compare these
measures with the frequentist power of a focused score

test. In Section 2 we describe the data. We formulate our
methods in Section 3. In Section 4 we present our find-
ings, and conclude with a summary and discussion of
various issues in Section b.

2 Data

Clayton and Kaldor® first analyzed the incidence of
male lip-cancer in each of the 56 districts of Scotland
using an empirical Bayes method. The data contain
observed and age-adjusted expected numbers of cases
for the six year period from 1975 to 1980, resulting in a
total of 536 cases in roughly 15 million person-vears-at
-risk' (pp. 536-537). The actual locations of the cases
are unavailable. Instead, the data include the latitude
and longitude of the centroid of each region (district),
and therefore we assume all cases falling within a given
region occur at its centroid. The regions are numbered 1
to 56, with one corresponding to the highest observed
{crude} incidence rate. Figure 1 shows expected numbers
of male lip-cancer cases. Higher numbers of expected
cases occur in the more densely populated regions of
Glasgow and Edinburgh, and surrounding districts. The
rural regions to the north and south have fewer numbers
of expected cases due to their smaller population sizes.

r:C:)i

Expected Cases
[ ]1.1-3.6
E==36-7.2
T 7.2-127
M) 12.7 - 22.7
B 22.7-83.7

Figure1 Regional age-adjusted expected
number of lip cancer cases in Scot-
land from 1975 to 1980.

Seale
1:6467186
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3 Methods

3.1 Frequentist null and alternative hypotheses

We consider a study region divided into % distinct
regions, each with E; expected cases and y: observed
cases, where y; is the observed value of the random
variable Y. The total numbers of expected and obser-
ved cases over the study region are denoted E. and w,
respectively. We are interested in examining whether
cases are significantly clustered around a focus & by
testing the null hypothesis

Hs: {Y:) are independent Poisson random variables with
E(Y,‘):Ei, Z-:l, C e k.

That 1s, under the null hypothesis each individual at
risk is equally likely to he a case, and the expected
number of cases varies only due to the heterogeneity in
population density expressed in the E/'s.

The alternative hypothesis is

Ha: E( Yi):EiGXD(Bgi), n

where f=In(RR;), RR; is the relative risk of disease at
the focus, and g: is a measure of exposure between the
ith region and the focus. True exposure information is
rarely available, and Tango® proposes as a reasonable
surrogate the function

i =exp{ — dui/ T), (2)

a non-increasing function of the Euclidean distance d..
between the centroid of the ith cell and the focus &, with
scale parameter .

It is well-known that the null distribution of the { ¥}
conditional on the ohserved number of cases, v, is
multinomial. The conditional null hypothesis becomes

Ho: Y1, ..., Yalye~multinomial

(y*, El/E..,, e .,Ek/E+) (3)

with conditional alternative

Ha Yy, L., Yelye~mualtinomial (v, m, .. .., 7, 4)
where
_Eexplfed.. 1 g
g‘.lEfexp(Bgf)

As in the unconditional alternative, a reasonable surro-
gate for the exposure function g is a decreasing function
of distance, such as the exponential function a.,; previ-
ously described in (2).
3.2 Focused score test

Waller et «f’V and Lawson'® formulate a focused
score test which is locally most powerful against the

alternative stated in (1). The particular form of the test
fits into the larger class of clustering statistics consid-
ered by Tango®, and is given by

U=y+Z {alnp)

where r;=y/y, and p;=FE./F.. The statistic sums the
differences in observed and expected proportions of
cases, weighted by exposure to the focus. The variance
of the score is the Fisher information given by

Var( 1) :y+[ggfpz‘ - (:ggr:f),-)zji.

Following Tango®, we standardize the score statistic
giving

where a={du.a, .. ... @Gr)s T=00 v o L /Y, pe=
(EVE,, ..., EW/EY, and Vo=diag(p)—pp’. We obtain a
large positive value of Us; when the observed proportions
of cases are greater than expected, indicating possible
clustering of cases around the focus. We reject the null
hypothesis based on a one-sided upper-tail test conduct-
ed at a==0.05.
3.3 Bayesian Hierarchical Model

Following Besag, York, and Mollié'®, we formulate a
Bayesian hierarchical model of disease incidence where
the {¥:|x;} are conditionally independently distributed
Poisson random variables with expected number of
cases fr; exp (1), and the log relative risk w; 15 a linear
combination of fixed and random effects. Specifically,
w:=x:8+ 0: ¢, where x, represents a vector of covar-
iate values associated with region i, 8 is the correspond-
ing vector of parameters, #; is a residual associated with
excess heterogeneity, and ¢; is a residual measuring
spatial similarity. We assign independent, mean zero
normal prior distributions to the excess heterogeneity
random effects, {6:). These random effects incorporate
extra Poisson variation into the model, perhaps due to
omitted covariates effecting the probability of disease,
but not in any clear spatial pattern. In contrast, the
spatial residuals, {¢.}, model the effect of unmeasured
covariates related to disease incidence that, if observed,
would be more similar for neighboring regions than for
those selected at random. We model the ¢/s using a
(Gaussian conditional autoregressive (CAR) prior'*,
where the expected value of ¢|¢;.. is simply the aver-
age of the residuals in contigucus regions and the vari-
ance is proportional to the number of neighboring
regions.

In our application, the covariate of interest is expo-
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sure to the focus, resuiting in the following full specifica-
tion of the model :

Vi s 2 Poigson (Er exp(p)),
pe= g+ i+ b,
Bz‘ 5‘_731 N(O,U),
¢=‘]¢z‘:i”N(—2“J‘ ;,n%h@, ;E:),
77 '~Ga(0.1, 0.1),
g ~Ga(0.1, 0.1),
and
8~ N{0, 10000},

where the notation j~i{ indicates that region 7 is adja-
cent to region f, and m is the total number of such
regions associated with region i. The hyperprior distri-
butions for » and « are similar to those used by Best ef
al® where Ga (a,b) denotes a Gamma distribution with
mean «/& and variance a/ &%

We fit the hierarchical model by implementing a
Markov Chain Monte Carlo (MCMC) method known as
Gibbs sampling using the BUGS (Bayesian inference
Using Gibbs Sampler) software package'™'®. We asses-
sed convergence at several levels of relative risk using
Gelman and Rubin's'? statistic, trace plots, and lag 1
autocorrelation. We used a burn-in of 2000, and retained
the last 10,000 iterations of the chain. Finally, note that

although we simulated data under various alternatives
by specifying values of the exposure parameter 8, we
intentionally fit the Bayesian model with the exposure
covariate excluded, thereby allowing the trend to be
expressed as spatial correlation through the ¢/s. Our
goal is to apply the method in a setting where the
investigator does not know the true form of the cluster
{(as measured by the exposure function), and to see if the
spatial residuals (the ¢,’s) will detect the cluster we
create in the simulated data.
3.4 Simulations

To assess performance of the testing and the modeling
approaches, we simulate disease counts in the Scotland
data bhased on a single focus in the region containing
Glasgow (district 49). Region 49 has nine adjacent neigh-
bors ranging in distance from 0.13 to .47 units from its
centroid. Figure 2 shows the locations of Glasgow and
its neighboring districts relative to the rest of Scotland.
We model exposure to district 49 according to the
exposure function described by Tango®, namely

o -1(4),

where I. is the maximum distance from the focus with
an appreciable increase in risk. We chose L=0.5 units
which approximately corresponds to the maximum

Figure 2 Glasgow (region 49) and its nine adjacent neighbors.
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distance between the centroid of region 49 and the
adjacent districts. For districts beyond a distance of 0.5
units from the 49th, exposure to the focus was essen-
tially zero. We specified a level of relative risk at the
focus in each simulation, which in turn established the
associated value of B (recall Z=In(RRs)). For the
focused score test, we specified a total of 100 distinet
levels of relative risk hetween 1.0 and 3.0 and for the
Bayesian hierarchical model, we specified relative risk
at the focus equal to 1.0, 1.1, ... ., 1.9, 2.0, and 3.0. We
then distributed the 536 cases among the 56 regions
based on the conditional alternative specified in (4),

For the focused score test, we selected #=0.2 units in
{2) so that distances bevond 0.5 units {the simulated
exposure radius) received little weight. As with the
hierarchical model, we define a score test as might he
applied in the absence of detailed exposure information,
rather than defire the test specific to the exposure
function generating the data. Using 10,000 Monte Carlo
simulations at each level of increased risk, we calcuy-
lated the empirical power of the focused score test to
detect the alternative as the proportion of simulated
data sets for which we obtained a significant result at o
=005,

As the Bayesian model does not result in a di-
chotomous ‘detect clustering/fail to detect clustering’
result, we use the posterior distribution of region spe-
cific SMRs obtained from the hierarchical model in a
manner similar to a frequentist test statistic. We do not
propose this approach as a competing lesting approach,
but rather use the approach to determine how often
estimates arising from the hierarchical model would
trigger clustering conclusions when in fact clustering
does exist.

Let M: be the median of the posterior distribution of
SMR in region /. We simulated data according to the
conditional null hypothesis stated in (3) and fit the
hierarchical model. We obtained the median of the
posterior distribution of SMR in region { and repeated
the process 1000 times, providing an empirical estimate
of the sampling distribution of M; under the probability
model based on the nuil hypothesis of no clustering (3).
We generated data 100 times for each alternative value
of relative risk according to (4), fit a hierarchical model,
and obtained the collection {mu., . ..., 00}, where m
is the sjth realization of the random variable M. under a
specified alternative (7=1, ....,100). Let m My be the
954k percentile of the estimated sampling distribution of
M; under the null hypothesis. Using this as a critical
value, empirical ‘power’ in region 7 was defined in the
usual manner as the proportion of {me., ...., #10)

exceeding m e, Note that due to the computational
burden associated with cach MCMC implementation of
the Bayes model, fewer simulated data sets were used
for each level of relative risk than in the implementation
of the Tocused score test.

4 Results

Figure 3 compares empirical power of the focused
score test and the ‘power’ of My for detecting various
departures from the null model when the focus being
tested is correctly specified (Glasgow). Again, we note
that while the focus location is correctly specified, nej-
ther approach uses precisely the same cluster model
which generates the data. From Figure 3, it appears the
focused score test and the Mp-based test have compa-
rable power for detecting clustering at a correctly speci-
fied region. We note that since the Bayesian mode] has
far fewer estimates of ‘power’ in the lower tail of the
plot the hehavior of the Bayesian model in this region is
not very well characterized and therefore it is difficult
to tell with certainty which test dominates here.

In addition to the power of the methods to detect
clustering about a focus, the ability to discriminate the
true focus from a collection of close regions, should also
be considered when evaluating different methods. Figure
4 plots the power for the focused score test centered at
regions: 49 (true focus), 54, 41, and 44. As can be seen in
Figure 4, the focused score test has high power for
detecting clusters even when the test’s focus js the
centroid of a region away from the true focus of the
clustering ; i.e., the test does not discriminate well
between the true focus and a focus located at the
centroid of a neighboring region. In contrast, Figure 5, a
plot of the ‘power’ of the M:-based approach for regions
close to the true focus, shows much better diserimina-
tion between the true focus and neighboring regions.
This discrimination ability can also be see in Figure 6
which maps the ‘power” of M, for regions /=54, 44, gnd
41, all close to the true focus. However, it should be
pointed out that the ability of the focused score test to
differentiate between close regions is largely due to the
weight vector used. In order to get discrimination prop-
erties similar to the M,~based test we decreased r to 0.03
units, a level which assigns appreciable weight only at
the focus. Figure 7 plots the same power curves as are
plotted in Figure 4 but with = 0.03, This will, in effect,
decrease the range at which regions receive significant
weighting. Notice, however, that the power of the cor-
rectly specified test decreases as well.

Another benefit of the Bayesian modeling paradigm is
that one has the entire posterior distribution of quan-
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Figure 3 Power curve for the focused score test and ‘power’ {see text) for the index Ms (posterior
median SMR) based on a hierarchical Bayesian model.
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0.8
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Figure4 Empirical power of the focused score test where r=0.2 (see text). Each graph presents
power where the focus of the test is specified by the named region, but we simulate data
in each case with the focus centered at Glasgow (region 49).
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Figure5 Empirical ‘power’ of posterior median SMRs M, Mes, Ma, and M. Each graph
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Figure 6 Map of empirical ‘power’ of M; for the simulated focus (Glasgow) and its nine adjacent neighbors,
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presents power where the focus of the test is specified by the named region, but we
simulate data in each case with the focus centered at Glasgow (region 49).
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Figure 7 Empirical power of the focused score test where r=0.03 (see text). Each graph presents
power where the focus of the test is specified by the named region, we simulate the data
in each case with the focus centered at Glasgow (region 49).

Relative Risk=1 Relative Risk=1.3 Relative Risk=1.8 Relative Risk=2
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Figure 8 Map of the 254k, 50th, and 97.5th quantiles of the empirical distribution of the posterior median SMR (M.).
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Relative Risk=1

50 th

20 0

20 Miles

97.5th

Relative Risk=1.3

Relative Risk=1.8

Relative Risk=2

Figure 9 Map of the 2.5k, 5084, and 9752 quantiles of the empirical distribution of the posterior median SMR (M;)

in the regions surrounding the simulated focus.

tities of interest for making maps such as Figures 8 and
9. What is immediately evident from Figures 8 and 9
reaffirms the point of the preceding paragraph ; i.e.,
increasing levels of SMR associated with increasing risk
are highly localized about the focus of our exposure,
even though we do not specify the location of the focus
in the Bayesian model formulation. The top row indi-
cates the lower 2.5tk percentiles of the empirical distri-
bution of M, for =1, ..., 56, the middle row the 50#
percentiles, and the bottom row the 97.5¢ percentiles.
The top row indicates that only the estimate of M, for i
=49 offers strong evidence of increased risk. In most
applications of the Bayesian approach, investigators
map only the median values (middle row of Figures §
and 9). In contrast, we note that the map of lower
percentiles offers a clearer picture of the actual cluster
center (highest increased risk) than the map of median
values, especially for relatively modest increases in risk,
We also note that our use of the multinomial alternative
hypothesis results in lower M:'s when i denotes areas
away from the focus, since the multinomial hypothesis

requires allocation of a fixed number of cases. To
increase incidence near the focus, cases become less
likely than expected in areas away from the focus. This
effect does not occur if one allows the total number of
cases to vary between simulated data sets.

Figure 10 demonstrates the discriminatory ability of
the Bayesian approach by plotting the empirical distri-
bution quantiles of M: for region 49 and its 9 adjacent
neighbors under four levels of increased risk. We order
regions by increasing distance from 49 from left to right,
The dashed lines indicate the 95th percentile of the
sampling distribution of each M,, =49, 54, 53, 47, 52, 41,
48, 38, 40, and 44. (Coincidentally, these values are all
near a SMR of 120, a value suggested by collaborating
epidemiologists as the smallest ‘interesting’ increase in
SMR Although many of the closest neighbors’ poste-
rior SMRs increase above 100 with increasing risk,
Glasgow (region 49} sees by far the largest jump, and is
the only one clearly above the tail of the null sampling
distribution of M,
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Fgure 10
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41 48 38 40 44

2.5¢h, 50th, and 97.5th quantiles of the empirical distribution of the posterior median

SMR (M) for the simulated focus (region 49) and its nine adjacent neighbors in order
of increasing distance from the focus. Each group represents, from left to right, the
interval obtained from a relative risk specified at the focus of 1.0, 1.3, 1.8, and 2.0. The
dashed line corresponds to the 95tk percentile of the empirical distribution under the

null hypothesis.

5 Discussion

In results not shown here and as expected, the focused
score test appears to have better power (as defined
above) to detect clustering than M, when the exposure is
correctly specified. However, in routine application, the
‘true’ clustering model is never known. The results
above indicate that, if the form of the exposure is mis
-specified (but close to the true exposure-distance rela-
tionship), the power of the score tests is comparable to
the ‘power’ (as defined above) of M; when the centroid of
region i corresponds to the focus. If the focus location is
mis-specified in the focused score test, there is a risk in
concluding that cases are significantly clustered around
the wrong focus. This lack of discrimination can be
minimized by decreasing the distance (from the focus) at
which regions receive large weight (i.e. high exposure
areas). We could decrease the value of r, or consider
different parametric forms of the weight vector, one
that decreases more quickly with distance. However,
hoth of these modifications can decrease the power of
the focused score test to detect clustering when the
focus location is correctly specified. Similarly, the

‘power’ of M. will change if the focus location does not
correspond to a district centroid, e.g. the method may
have low ‘power’ versus a focus near the boundary
between geographically large regions. Additional simu-
lation studies clarifying these issues are the subject of
future research.

Our results indicate that even though the hierarchical
model ‘smooths’ small area disease rates by allowing
spatial similarity, such rate estimate stabilization does
not come at the cost of ability to detect aberrant obser-
vations. The ‘power’ to detect unusually high SMRs is
comparable to that of the score test even for low,
environmentally tenable, levels of risk. This along with
the Bayesian model’s ahility to discriminate between
regions and the richness of the results obtained (‘smooth-
ed’ maps of all SMRs with associated posterior probabil-
ity intervals), makes the Bayesian hierarchical an
attractive approach for the spatial analysis of regional
disease data. Arguing against the use of the Bayes
approach is its computational burden, which is far
greater than required by the focused score test. If one
desires a ‘quick and dirty’ test of clustering about a
focus, the focused score test should provide good results
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as long as the range of the exposure function is consid-
ered so as to minimize the chances of detecting signifi-
cant clustering about the wrong focus. If however, one
wishes to map stabilized estimates and search for areas
of observed increased risk across the study area, and
one has access 1o software like BUGS, the hierarchical
Bayes approach offers a wider choice of inferential
opportunities without the loss of sensitivity to local
clustering.
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