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Analysis of small area disease clustering using RIMCMC

Andrew B. Lawson and Allan B. CLARK

This paper describes a variety of approaches to the analysis of clustering in small area health
data. These approaches involve the modelling of clusters in boty shape and size and the approaches
use full statistical models in a Bayesian setting, rather than statistical tests.

Included in the review is an account of both case event and count data clustering as well as

extensions to space-time clusters.

1 Introduction

The analysis of small area data where the location of
residence are known is well documented?®. However,
most of the model based analysis has been based on
either clustering around fixed foci'” or on description of
the general pattern of disease®”. While some good tests
of clustering have appeared® many of these are not well
understood, and are restricted to suggesting cluster
locations which are actual events.

The model suggested in this paper can accomplish
both of these tasks. In comparison to the Markov
Random Field models®" it does not require the specifi-
cation of arbitrary neighbourhood structures. In com-
parison to the clustering detection methods®® it is not
restricted to estimating cluster locations as events. A
review of these is provided in Lawson et al*®.

The analysis of clustering in small area health data
has attracted increased interest in recent vyears, see
Lawson et al®**. Both public concern for the existence of
‘clusters’ of disease and growing interest in the causes of
clustering, per se, are partly responsible for this
increase. A growing interest in environmental issues
both in the general public and the scientific community,
has led to interest in clusters related to environmental
hazards, e.g. power stations, incinerators, electro-mag-
netic fields or toxic waste dumping sites. The analysis of
clustering in small area health data can be approached
in a variety of ways, depending on the purpose of the
study.

Two fundamental considerations should first be asses-
sed :

1) Is the clustering in the data of primary interest?

2) Is the clustering of secondary interest, and hence, a
nuisance feature?

University of Aberdeen, UK

In the first case, some detailed aspects of clustering
may he of interest, e.g. How likely are # clusters? What
is the marginal posterior distribution of the centres of
clustering, given # clusters? Are there different scales of
clustering supported by the data?

In the second case, clustering tendency is to be esti-
mated, perhaps as part of a background feature of the
process but other aspects of the disease process are of
major interest. For example, some diseases are known
to form clusters at certain scales (e.g. Leukaemias®), but
the relation of the disease incidence to putative sources
of hazard may be of prime interest. Hence, in this case,
clustering is a ‘nuisance’ background characteristic. A
review of these is provided in Lawson and Kulldorff2™.

In this paper, an approach to the analysis of clustering
in small area health data is proposed, which can accom-
modate both of the above cases, via direct modelling of
clustering within a more general model framework. The
methods used are primarily Bayesian, as considerable
use is made of MCMC methods. The methods have
considerable generality and can be applied to both case
event and counts of cases in arbitrarily-defined regions.

2 Model Development

The data ¥y and cluster centres x are spatial point

patterns:
y={yyeeee Ym)}, m>0, p&T
x=[x1, ......... Xn} , n=0, el

where T is the study window and U is a region which
encloses T. By allowing U to differ from T, we allow the
possibility of locating putative cluster centres outside
the window of observation of the data. This makes some
allowance for the edge effect where data could appear in
the window but a centre lies outside, i.e. the boundary
splits a cluster so that some part of the form is censored.
The observed data v in this paper are address locations
of cases of disease, observed within T and a fixed time

J. Natl. Inst. Public Health, 48(2): 1999



114 Anpalysis of small area disease clustering using RJMCMC

period. Diseases of interest could be leukaemias, which
are thought to cluster weakly®, or possibly, respiratory
disease, such as respiratory cancer, larynx cancer or
bronchitis, which could relate to one or more sources of
health hazard (e.g. incinerators, waste dump sites etc.).
In either case, unohserved heterogeneity in the environ-
ment and/or population experiencing the disease events
could lead to clustered disease incidence over the win-
dow T.

In any analysis of vy, the population experiencing the
disease events must be considered. The variation of
population over space, in its density and its propensity
to contract a disease (its ‘at-risk’ structure) can lead to
apparent ‘clustering’ or ‘heterogeneity’ in y. Hence, to
properly assess clustering in such data it is important to
account for the spatial variation in the ‘at-risk’ struc-
ture of the population. To achieve this, a variety of
approaches can he adopted. The commonest approach is
to estimate the ‘at-risk’ surface either, from the known
features of the population, such as age-sex structure or
measurements of deprivation or life-style information.
These data are usually available for small areas, from
national censuses. Or alternatively to use a ‘control’
disease. The first approach is often termed ‘standardisa-
tion’, when applied to count data in census tracts (see e,
2.'®. It has been applied to the assessment of single
‘cluster’ of case event data (see?®). The second approach
can be applied where a ‘control’ disease can be chosen
which has a similar ‘at-risk’ structure to the case dis-
ease, but is not known to display clustering. This
approach has been used by a variety of workers (see e.
g2 to examine possible ‘clusters’ around putative
sources of health hazard. In these cases, the control
should not be known to be affected by the hazard, and
hence should not ‘cluster’ near possible sources. In the
general clustering case, where no specific environmental
cause or factor is hypothesised and can be measured,
then the ‘control’ disease should be known to be free
from a clustering tendency.

In what follows we represent this modelling approach
by using the first order intensity of the process, the most
general from of which is:

Al =g (). 1+ 2 o hly ;).

I (1+7(y-x) n

E=nx+]

In all the applications we examine, g(y) is considered
to represent the background ‘at-risk’ process, the g
represents the mean number of points in centre i, the &
represents the dispersion around the ¢th centre, & is the
cluster distribution function for the 7th centre and f is a

cluster distribution function for known foci.

Note that we assume a multiplicative link between the
population background and cluster distribution func-
tions which implies that any spatial structure modelled
in cluster distribution functions will be directly modified
by variations in g{y). The alternative of a pure additive
link (see e.g., pl42), would imply that spatial structures
modelled in the clustering were of fixed size and hence
unaffected by the population structure. This would
appear to be inappropriate for spatial epidemiological
data.

2.1 Priox Distributions and Cluster Structure

In the case of non-focussed clustering, prior distribu-
tions must be provided for the components #ny, X and
parameters in k(y —x). Typically, the number of centres
is assumed to have a Poisson (@) distribution, while x
could follow a homogeneous Poisson process. However,
it is possible to specify joint prior distributions for these
parameters, e.g. Strauss distributions. Previous
work?®?2® discusses the theoretical justification for this
in non-modulated cluster processes and Cox processes.
Alternative specifications for the x prior distribution (e.
g. a Markov inhibition process) can be suggested hased
on algorithmic considerations (see section 4). The clus-
ter distribution function can take a variety of forms. A
commonly used form is

h(yﬁx):ﬁz_iae—m”mzm 2)

a radially isotropic Gaussian form with cluster variance
. However, alternative forms are possible, including
non-parametric versions. For example,

Rly—x) = ﬁ:k(y;f) -f}k(%) (3)

=1 J=1

where k() is a kernel function (see e.g.®"), provides a
nonparametric estimator for A.

The possibility of aillowing a flexible cluster shape,
via density estimation, may be attractive in situations
where the exact form of clusters cannot be parameter-
ised. This allows a considerable latitude in the definition
of the cluster form while retaining a general model
paradigm.

Further alternative approaches can be proposed which
provide great flexibility for cluster modelling :

- the use of {u,, &} for each cluster allows variation

in sizes across the field (as in a conventional mix-
ture problem)

- the use of a spatially dependent #(x), cluster vari-

ance, can be employed (see e.g.'®).

Note that in the second alternative, a spatial Gaussian
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random field prior distribution can be assumed for #(x).
Typically this would be MVN (Fa, o), where F is a
spatially-dependent design matrix. This allows smooth
variation over the study region for the cluster variance.
This is considerably more parsimonious than the first
alternative.

3 Algorithms

The development of Markov Chain Monte Carlo
(MCMC) methods and other iterative simulation
tools®** has allowed the implementation of algorithms
which can explore posterior distributions of the spatial
problems identified above. Note that for both case and
count data, if foci are known then straightforward likeli-
hood models, or conventional aspatial Bavesian models
can be applied (see e.g.®#192322) [f the locations of
foci are unknown, then spatial prior distributions must
be invoked.

3.1 Incorporation of Background Risk

Before considering the detail of basic algorithms, it is
important to examine the issue of how the background
risk surface (g(¥)), can be incorporated in these prob-
lems. So far two basic approaches have been proposed :
3.1.1 Profile Likelihood

In early work on case events®®, the function g{y) was
estimated nonparametrically, and inference was made
conditional on the fixed of g(y), without regard to
estimation errors inherent in g{y). Diggle'? proposed the
use of a control disease case event map to provide a
density estimate of g{y), while Lawson and Williams?®
compared the use of a control disease, and expected
deaths, to estimate g(y). Both approaches require
smoothing of the background risk based on external
data. An alternative hybrid model which used expected
deaths in regions directly was also proposed by?®. The
use of control disease event maps has a number of
disadvantages. In particular, the matching of a control
disease to the ‘at-risk’ group of the cases, while being
unrelated to the effect under study, can be difficult.
Indeed, Diggle'" provides an example of a control dis-
ease (respiratory cancer) which is related to the effect
under study (air ollution). The use of expected deaths
does not suffer from this problem but is usually only
available at an aggregated level (e.g. census tract). Other
background factors should also be incorporated where
known, eg. deprivation indices. However, these are
usually only available at tract level also.

3.1.2 Label Modelling

For the special case where a control disease is used, it
is possible to use a bivariate point process model which
directly incorporates the control event locations in the

model. By conditicning on the locations of cases and
controls, then it is possible to directly model the mark
labels on the events (see e.g."), and thereby the window
(T) becomes irrelevant to the inference. In addition, this
conditioning can be used to avoid esimation of g(y).
Diggle and Rowlingson'? (DR) suggested the use of this
approach in focussed clustering problems. This leads to
a logistic regression formulation of the problem. Note,
also that, as a special case of a Markov point process,
conditicnal on the locations, the labels form a hinary
Markov random field? and the auto-logistic model
results. Assuming an Ising model, standard logistic
regression methods apply.
3.1.3 A Bayesian Smoothing Model

The label modelling approach above, is only appli-
cable when an appropriate control disease is available.
To keep the model approach general, it is important to
pursue methods which are not limited to such a specific
case. An alternative approach is to regard the smooth-
ing operator in g(y) as a sample realisation of possible
smoothing values which have a prior distribution. This
both allows the incorporation of g(y) within the estma-
tion process and allows the exploration of the variation
in g(y) in relation to the other parameter dimensions.
This is discussed further in section 3.3.3.
3.2 Basic Point Event Algorithm

In the most general Bayesian formulation of the
cluster model, we define the joint posterior distribution
of {x, 8} as

P(x, 8ly)eL(ylx). p(x). £(8) (4)
where
Lyi)=([14 ()}, exp(— [ A(uix) du} ®

p{x)=prior distribution for x (Markov inhibition or
Uniform) and #. (Poisson {p)),

g{@)=prior distributions for cluster function parame-
ters.

Mbo=gG). 1+ S G=s). T (147 G—w)
{6)

where there are n, unknown and #—#, known foci.
Note that the final fixed-foci term of (6) could also be
dependent on covariates related to the individual obser-
vations {%:} or random effects?V,
3.3 The Basic Algorithm

It is convenient to define three sets of parameters for
the purpose of the algorithm steps. These sets can be
considered as separate components of the sampler
design. A two stage sampler proceeds by considering
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spatial cluster parameters within an inner iterative
sampler conditional on current values of other parame-
ters. The three nested sampling schemes ave:

1) spatial cluster {sc} parameters: x, 7«

2) non-spatial (nc) parameters: for example o, x and
« (assuming a Gaussian cluster distribution is used)

3) smoothing parameter(s): for example g£{y) may
depend on s (a smoothing parameter).
3.3.1 SC parameters

The derivation and properties of the following algor-
ithm are discussed in®” and®, The posterior distribution
(4) could be explored by conventional iterative simula-
tion methods, except for the cluster term, where a
summation with a random upper limit occurs. This is
essentially a mixture problem, and the sc parameters in
this problem are best explored by a reversible jump
Metropolis-Hastings (MH) sampler’®* involving a
mixture kernel. Essentially the joint distribution of x
and 7; must be explored during iteration. This can be
achieved by a spatiai~birth-death-shift (SBDS) algorith-
m, where centres are added, deleted or shifted with
given probability. A sequence of likelihood ratios can be
specified for each case. In general, for a new configura-
tion x’, the posterior density ratio is, conditional on nc
and h parameters;

‘ N LA¥x} | px
This ratio is evaluated for x” within the SBDS algor-

ithm based on an MH criterion. A proposal configura-
tion x’ is accepted with probability

Alx, x'):min{l, PR(x, x). 48X5 %) ] 8

g(x, )
where g{x’, x) is the proposal distribution for the new
state. Often the proposal distribution for a point u is

defined as a function of A(y —u) itself {e.g. %%h(yr—u))

as simpler uniform proposals can lead to high rejection
rates. We use Markov inhibition priors for x, as the
peaked nature of the likelihood surface can lead to
multiple response, and it is important to propose spa-
tially-separate new x values to avoid this problem. To
this end, the Strauss prior can be used, and is defined for
the proposed addition of a point u as

p(xUu)

P A “

where 4 and 0< y<<1 are parameters and ne(u) counts
the number of x within a distance R of u. Similar ratios
can be defined for deaths and shifts.

For the likelihood, (5), the likelihood ratios are:
for addition:

I [1+ —Ayiow) ] g a8
R 2 P(y:— %)

for deletion :
ﬁ [ . Q xd), ] AT [xg} (]1)
=1 1‘+‘2]’L(}1,—x})

where x4 is the point to be deleted ;
for shifting :

H [H— h(ya ) k(y, Xa) } [A(T|xg)=A(T|w)} (12
= 1+ Z B(y:i— ;)
where
A(T %)= f Alulx)du. 3

Note also that it is usual to include a constant rate scale
parameter in A(ulx) (5 say). However, it is possible to
condition out & from the analysis, and this can reduce
the parameter dimensionality of the algorithm. To do
this the likelithood ratio in (7), can be written in the form,
conditional on m :

St |- () e

where § is removed from Afulx) and A{). It is straight-
forward to derive the equivalent ratios to (10)-(12), for
this case.

3.3.2 NC parameters

The parameters of the cluster distribution function,
and other prior distributions can be treated convention-
ally. In most cases here, we assume that nx has a
Poisson (e) prior distribution. This parallels the assump-
tions which specify a Poisson Cluster Process in ordi-
nary point process models'®'®, It is also possible to
assume a prior distribution for g, and a Gamma distribu-
tion is often used. We have no strong prior reason to
assume any other distribution than a uniform indiffer-
ence prior on a suitable range (usually < m).

The cluster distribution parameters (g, &), based on
model (2), are also assumed to have uniform indifference
priors. The sampler steps used for p, # and x differ
depending on whether a Gibbs or MH step is simple to
implement. A Gibbs step is straightforward for o, where-
as to implement a Gibbs step for x or g requires an
optimisation step {to obtain ml estimates), and in these
cases an MH step is used.

3.3.3 Smoothing Parameters
The function g(¥) In previous work g(v) has been esti-
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mated nonparametrically, or has been conditioned out of
the analysis (see section 3.1). It is possible to incorporate
the estimation of g(y} within the MCMC algorithm. We
regard the smoothing parameter (s) of a smoothing
operation which estimates g(y), as a random quantity.
We can update the parameter s just like any other
parameter in the MCMC algorithm. In order to specify
the Bayesian model completely we need to define a prior
distribution for s. A natural choice, motivated by work
on Gaussian Mixtures”, is the inverse gamma distribu-
tion.
pisla, ﬂ)=%5‘”“exp(_%) {15

The hyperparameters {, 3) can be assigned non-infor-
mative hyperpriors. This approach is discussed further
in Lawson and Clark?®.
Cluster distribution smoothing If the cluster distribu-
tion function is estimated nonparametrically as in (3),
then the appropriate smoothing constants (%, /) must
also be included in the iterative estimation scheme. A
procedure similar to that suggested in (15) can be used
and replaces the steps for u and &
3.4 The Label Modelling Algorithm

The alternative to direct estimation of g(y) in profile
likelihood or the Bayesian smoothing model, is the label
modelling (DR) approach. In this case we can define a
conditional probability of a case event at y, out of a
case/control disease bivariate realisation, as :

g)0.(1+ Ely =), [1 (1+£(d,n)

n

y = nx
g(y)+g(y).8(1+§1h(y—x;)). I (+7{dx))

0+ Ehly—x)).
1+.8(1+ S hly—x)).

T+ £(dye)

i=l+nx

T 0+ (dy)

i=l+nx

Where dix, , denotes the distance from y to the ith
cluster centre. Note that this conditional model can be
derived from a full bivariate competing risk model for
cases and controls. i.e.

Pr (case at y)=A{yl|x). g /ro¢udumau

2
Pr {event at y)=Zt]/l.g(yIX).e’“”‘”“""d”

where A; is the intensity of the relevant effect (A, for
cases) (see e.g.?).
The likelihood of s cases and % controls is

m+n

L=11PG). 11 (1-P() ()

This cenditional approach can also be used to replace

L{y|x} in (8) by (17) within the main cluster algorithm.
This leads to comparable ratios for the SBDS algorithim.

The nc parameter sampler can be constructed as for
the basic algorithm and it is also possible to use a non
-parametric estimate of A(y —x) in this situation (see e.
.25,

4 Count Modelling

Small area data is often available only as counts of
cases wihtin arbitray regions (usually census tracts).
Hence, a considerable literature has grown around the
analysis of such data. While methods have been devel-
oped to test for global (e.g.3***) and focussed culstering
of counts (e.g.!®3247) little attention has been paid to
the modelling of non-focussed clustering of count data.
The methods applied to case event data can be applied
here. Given the conditional independence assumption,
then the counts in disjoint regions (say =} are indepen-
dently Poisson distributed with integrated intensity
given by

A= [ gl (1+ B ufu—x; )

lﬁ[ﬂ(l +f(u—x))dn

k=nx

where A; denotes the ith region. If we only observe the
events in specific subregions then it is likely that we
shall only observe the controls at that scale. However,
hybrid algorithms are available when we observe the
processes on different scales®®. Denote the control count
(usually called the expected count) in the ith region by
.. With this notation we make the approximation

A(Ad]) =m. f (1+ z# Bl —x k)
I (1 u—x))du

(;onditional on N, the total number of cases (i.e. N=
g}lm), the likelihood for p regions is
ne
£ )
Linlx,®)=1T {M&} 9

=1

)
gA(AJX)

We can directly use the basic point process algorithms
and replace the likelihood ratios with those based on
(18). The sampling algorithms can be modified to accom-
modate this case.

5 Spatio-temporal Clustering

So far we have only discussed clustering in space. In
this section we shall extend the above model to deal
with space-time (spatio-temporal) clustering. In what
follows we describe three different types of clustering
each being indetified by its persistence properties. The
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analysis of spatio-temporal data is more complicated
than the spatial case, with edge effects arising in a
number of different forms, and a larger variety of
possible sampling spproaches which could lead to differ-
ent modelling strategies.

The edge effect problem can take a variety forms due
to possible lead times in detecting a disease, e.g. breast
cancer. This of course has a consequence for defining
the temporal location and how coarse one can split time
up. If the outcome is death then, of course, this problem
does not exist. Alternatively, there may be cases occur-
ring outside the spatial study region during the temporal
study period and these will be censored.

Putting these problems aside for the moment, we can
imagine a number of possible clustering structures. The
clustering structures that are included in our model are

1. The disease may cluster in time throughout the

whole spatial region. We shall call this a temporal
cluster

2. The disease may cluster in space throughout the

whole temporal study period. We shall call this a
spatial cluster

3. The disease may cluster locally in both time and

space. We shall call this a spatio-temporal cluster

Each of these can be seen in figure 1.

We shall assume that these cluster terms can be
separably defined, and so we define three different and
additive functions of the three cluster centre types. We
assume an intensity function of the form

AMybxs, o x5, 0)=g(y). {1+ a2y 1)
nic
+ a’zz_gl oy — 2}
RELC
+ 6?3;21 I’L';(y *Xaf)}

where »° is the spatial coordinate of y, ¥* is the temporal

0 o
oo 00 ¢ o
0 q o .
4+ o
j +.+. o
+5 ***#0 [4) O
+ %, _
+ Time (1)
X plane
Figure 1

coordinate of y, xi={x:.}7%§ are the spatial cluster
centres, Xz={x:7.{ are the temporal cluster centres
and x;={x,7L{° are the spatio-temporal cluster cen-
tres and @ is a vector of parameters that specify the
cluster distribution functions (f, % and /). A series of
weights (@, o, @} are also included within the formula-
tion, to allow for different contributions from the differ-
ent components.

The basic point event algorithms can be applied to
this intensity with only minor modifications.

5.1 Spatio-Temporal Example :

Scottish Birth Abnormalities

We examined the application of the sampler to the
distribution of congenital birth abnormalities within
post code units in the Tayside region of central Scotland
for the period 1991-1995. The distribution of the total
abnormalities is not orderly within post code units and
multiple events can occur, and so we resort to a count
model (18) for the unit spatio-temporal area. We have
used total births for the post code sectors as a control
for the population background.

The temporal standardized mortality ratio (SMR) is
plotted in figure 2. This clearly suggests that the rate of
birth abnormalities is varying with time with two large
peaks after 18 months and 53 months.

The spatial SMR is plotted is figure 3. The figure
indicates a large amount of clustering in the centre of
the map and is suggestive of some spatial trend.

We fitted the model and the results (not shown) indi-
cate two temporal clusters at months 15 and 53, and one
spatial cluster centre in the south-east. A nonparametric
estimate of the rate in space-time is given in figure 4
and indicates some localized temporal clustering.

& Conclusions

In this paper we have described a wide range of
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Figure 3

spatio-temporal clusters
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approaches to cluster modelling, all of which depend on
the use of RIMCMC to allow the exploration of the joint
posterior distribution of {7, %}, the number and loca-
tions of the cluster centres. A wide range of applications
have been discussed and we have demonstrated the
flexibility of the approach to cluster detection. These
methods are computer intensive, but given the recent
advances in computer technology we do not fell that this
is a major drawhack.

We have demonstrated the model on a spatio-tempo-
ral data set in Scotland. It is hoped that we can include
covariates in this model to allow for trend and differing
levels of deprivation. The results have been promising
and reflect the general spplicability of the approach.

While one can never replace a carefully designed case
-control study with observational data, the development
of realistic models for clustering can suggest the need
for further study. The inclusion of covariates into such
models is of prime importance, indeed in our formula-
tion the cluster terms represent unmeasured covariates.
However, covariates are usually hard to obtain and one
often has to result to crude measures such as Kafadar

-Tukey urbanization index or deprivation indices as
surrogates. It is hoped that this information will he
available in the future.

The model presented here may have uses in the devel-
opment of a spacetime surveillance alarm system. The
divelopment of such a system would be of major public
health importance and is a long term research aim.
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