Introduction

Physical growth of children differs among many countries [1]. Also, regional difference exists within a country or province [2]. Some causes of regional difference are socio-economic or nutritional status [3, 4, 5, 6] and others include genetics [7]. A single growth standard like that of NCHS makes it difficult to evaluate adequate physical growth with regional difference [8].

In Japan, stature is higher in northern/eastern part than southern/western part within a country. School health statistics of Japan [9] also shows that stature of 17-year-old boys and girls are lowest in Okinawa Prefecture, which is located southern/western end of Japan. In growth assessment in infancy and childhood, there is an argument concerning whether it is adequate or not to assess growth of children in Okinawa Prefecture by National Growth Standard in childhood. We investigated growth data of the Yaeyama Islands, located 600km south-west of Okinawa Main Island and compared with National Growth Standard.

Methods: Growth data of 593 infants (289 boys and 304 girls) born between September 1995 through December 1996 were gathered through 4, 10, 18 and 39 months health check-ups, and were analyzed in this study by cross-sectional. Mean value of each age group was calculated and compared with that of National Growth Standard of Japan based on survey by the Ministry of Health Labour and Welfare in 2000 (MHLW-2000).

Results: Boys were heavier in weight at 3, 10, 17 and 18 months of age and longer in stature in 3 and 17 months of age with statistical significance (p<0.05). Girls were heavier in weight at 3, 4 and 17 months of age and higher in stature at 17 months and lower in stature in earlier half of 3 years of age with statistical significance (p<0.05).

Conclusion: Our study clarified that physique of children in the Yaeyama Islands is no smaller than national standard under age of 2 years, getting smaller after 3 years of age.

keywords: postnatal growth, children, child health service, population characteristics, reference growth curve

(accepted for publication, 1st October 2012)
standard is not always useful in some region like Okinawa Prefecture. Mean birth weight of Okinawa Prefecture was 3.00kg in the year 2000 compared to 3.03, mean birth weight of all Japan [11]. As shown in Table 1, weight and stature of Okinawa children are significantly smaller than all Japan by Annual Report on School Health Statistics [9]. It suggests small physique of children in Okinawa Prefecture. If the region is far more distant from Japan Mainland compared with Okinawa Mainland, it is assumed that we can find more difference in child physique from national growth standard than children in Okinawa Prefecture, major population of which lives in Okinawa Mainland. So we can make further insight into the regional difference in child growth.

The present study, we investigated growth data of the Yaeyama Islands, located 600km south west of Okinawa Main Island and compared this with National Growth Standard. If the region is far more distant from Japan Mainland compared with Okinawa Mainland, it is assumed that we can find more difference in child physique from national growth standard than children in Okinawa Prefecture, major population of which lives in Okinawa Mainland. So we can make further insight into the regional difference in child growth.

In the present study, we investigated growth data of the Yaeyama Islands, located 600km south west of Okinawa Main Island and compared this with National Growth Standard.

II. Materials and Methods

1. Subjects and anthropometry

The present study was conducted in the Yaeyama Islands, which is located 600km south west of Okinawa Main Island. It is inhabited by total of 50,577 people. It covers the area of 592km².

593 infants born between September 1995 through December 1996 were followed up to 3 years of age with regular check-up protocol in regional maternal and child health service program. The numbers of infants born in the Yaeyama Islands were 614 in 1995 and 672 in 1996 respectively. So, estimated number of babies born in the period corresponding to present study is 977. Therefore present study covers 60.7% of infants born in the area.

2. Analysis

Growth data of 593 children were analyzed by cross-sectional. Measurement data of weight and stature were divided into age groups which were used in the calculation of National Growths Standard [10]. Mean value of each age group using means procedure of the SAS software package version 9.2 (SAS Institute, Cary, NC, USA), and was compared with that of National Growth Standard of Japan based on survey by Ministry of Health Labor and Welfare in 2000 (MHLW-2000) [10]. Body weight was measured to the nearest 10g, and supine length or standing height to the nearest 0.1cm. Body stature was measured in supine position under 2 years of age, and in standing position over 2 years of age.

3. Ethical commitment

The study was performed following the guidelines of Ethical Committee of National Institute of Public Health. All measurements were carried out by trained nurses, whose techniques were standardized according to procedure described in the manual of national survey by Ministry of Health and Welfare in 2000 (MHLW-2000) [10]. Body weight was measured to the nearest 10g, and supine length or standing height to the nearest 0.1cm. Body stature was measured in supine position under 2 years of age, and in standing position over 2 years of age.
the data were analyzed anonymously and dealt with using ID numbers. The data were the part of the findings from regular health check-ups by municipal government and the analysis was done under the permission of Child Health Association of Okinawa Prefecture.

III. Results

The mean and standard deviation of weight and stature of each age group were shown along with the MHLW 2000 value, in Tables 3 for boys and in Tables 4 for girls.
The regional difference in children's physical growth between Yaeyama Islands of Okinawa Prefecture and national survey in Japan

Table 4 Comparison of female weight (kg) and stature (cm) between National Growth Standard and Yaeyama

<table>
<thead>
<tr>
<th>check-up period</th>
<th>age group</th>
<th>Number</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Number</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>Yaeyama</td>
<td>334</td>
<td>3.02</td>
<td>0.45</td>
<td>MHL-W-2000</td>
<td>1974</td>
<td>2.96</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>early</td>
<td>54</td>
<td>6.69</td>
<td>0.61</td>
<td>107</td>
<td>6.38</td>
<td>0.69</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>infantile</td>
<td>134</td>
<td>7.01</td>
<td>0.86</td>
<td>160</td>
<td>6.72</td>
<td>0.81</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>late</td>
<td>94</td>
<td>8.59</td>
<td>0.91</td>
<td>110</td>
<td>8.40</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>95</td>
<td>8.71</td>
<td>0.99</td>
<td>125</td>
<td>8.50</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>one year</td>
<td>133</td>
<td>10.41</td>
<td>1.24</td>
<td>118</td>
<td>9.76</td>
<td>1.02</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>and a half</td>
<td>109</td>
<td>10.36</td>
<td>1.08</td>
<td>130</td>
<td>10.10</td>
<td>1.04</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>3 years</td>
<td>208</td>
<td>13.75</td>
<td>1.46</td>
<td>217</td>
<td>13.58</td>
<td>1.68</td>
<td></td>
</tr>
</tbody>
</table>

***p<0.001 **p<0.01 *p<0.05

For male weight, mean values were significantly larger than national growth standards at 3, 10, 17 and 18 months of age. They were almost equal at birth. They were smaller than national growth standard without statistical significance at 4 and 10 months of age and at three-year-old health check-ups (Table 3).

For male stature, mean value were significantly larger than national growth standards at birth, at 3 and 17 months of age. They were larger without statistical significance at 4 months of age, and were smaller without statistical significance at 9 months of age and at three-year-old health check-ups (Table 3).

For female weight, mean values were significantly larger than national growth standards at birth, at 3, 4 and 17 months of age and at three-year-old health checkups. They were larger without statistical significance at 9, 10 and 18 months of age (Table 4).

For female stature, mean values were significantly larger than national growth standards at birth and at 17 months of age. They were larger without statistical significance at 3 and 9 months of age. They were almost equal at 4 and 10 months of age. They were smaller without statistical significance at 18 months of age and significantly smaller at three-year-old health check-ups (Table 4).

IV. Discussion

Our study clarified that physique of children in Yaeyama Island is no smaller than national standard under age of 2 years. On the other hand, vital statistics of Japan shows that the mean birth weight of Okinawa Prefecture is 3.00kg, 0.03 kg smaller than the mean of all Japan which is 3.03kg, as generally commented. Present study covered 60.7% of births of corresponding period. So we can stare from the results that children under 2 years of age in the Yaeyama Islands are no smaller than all Japan.

At the age group of earlier half of 3 years, mean weight for boys and mean stature for both boys and girls are smaller.

School Health Statistics of Japan (2000) shows regional difference [12]. As shown previously in Table 1, both boys and girls show smaller mean value in Okinawa Prefecture than all Japan. This suggests that children who are younger than two years of age are no smaller in Yaeyama/Okinawa Prefecture than all Japan, but as the age goes up they get gradually smaller. Although the subjects reached to adolescent age now, we have no data of them. If we had data, it would be easier to discuss characteristics of the inhabitants of the Yaeyama Islands.

The mean stature of 4 months old Yaeyama boy (64.5cm) was smaller than that of 3 months old (65.1cm). Children are brought to earlier infantile health checkups on either 3 months of age or 4 months of age. So 54 cases measured at 3 months of age and 152 cases measured at 4 months of age are wholly different children so that the smaller mean value at 4 months of age than which at 3 months of age possibly occurs. Similarly, the mean weight of 18 months old Yaeyama girls (10.36kg) was smaller than that of 17 months old (10.41kg). Children are brought to one year and a half health checkups on either 17 months of age or 18 months of age. So 113 cases measured at 17 months of age and 109 cases measured at 18 months of age are wholly different children meaning that the smaller mean value at 18 months of age compared with at 17 months of age possibly occurs.

Okinawa Prefecture is far distance from major Islands of Japan, and also Yaeyama Islands are with more distance than Main Island of Okinawa. It is considered that people in Okinawa Islands are genetically isolated from major island of Japan, a part of the reason for regional difference is considered to be genetic one. Shinya [13] points out the necessity of considering genetic differences of school children in Okinawa Prefecture for the assessment of obesity.
However, near half of inhabitants of Yaeyama Island moved from other areas of Japan, so, cases of present study are genetically mixed. Statistics in Ishigaki City [14] show social increase in population. Growth of the Yaeyama Islanders may show different profile from present study. Although considering that, the results of present study figured out the characteristics of the growth of children living in Yaeyama Islands of Okinawa Prefecture.

In Great Britain, physique of children is said to be affected by social factors rather than regional one [15]. Also many reports mention that growth of children differs regionally as well as socio-economically [3,4]. Regional and socio-economical factors can not be discussed separately.

Growth of early childhood is effected by intrauterine condition [16], and also birthweight has prolonged effect to 3 years of age and more [17]. Health states monitoring of children are necessary from neonatal period to later ages.

Present study is limited because there is a sampling bias which occurred from voluntary attendance to the regular health check-ups. Moreover, only a part of them were followed up to three years of age, making the bias stronger. Parents who bring their children to health checkups and continue visiting until three years of age may be strongly interested in health of their families, which might lead to firm or large physique of their children. Besides the limitation, present study outlined child growth in the Yaeyama Islands, which provides insight into the regional differences in the growth of Japanese children.

In conclusion, children of Yaeyama Islands are no smaller than national standard before the age of 2 years, but they get smaller after 3 years of age. Regional difference in growth of children was identified between the Yaeyama Islands and all Japan. Genetic factors suggested to affect regional difference. As regional difference in the growth in children was identified between the Yaeyama Islands and all Japan, genetic factors should be further studied.

Acknowledgements

We thank Ms. Morita from the National Institute of Public Health for her technical assistance. This research was supported by grant of Research on Children and Families (H10-CF-007) from the Ministry of Health, Labour and Welfare of Japan.

References

沖縄県八重山諸島における小児の身体発育に関する研究

背景：日本人の身長は東北日本で高く西南日本で低い。乳幼児の発育評価において、沖縄県の子どもを全国水準の基準で評価することの是非が問題となっている。沖縄本島から南西に600km隔てられた八重山諸島の発育データを解析し、わが国の発育基準値と比較検討し、

方法：1995年9月から1996年12月の間に出生した男児289名、女児304名の、4か月、10か月、1歳半、3歳児時の発育データを集めた、横断的に解析した。年齢階級別に平均値を算出し、2000年に全国調査された乳幼児身体発育値と比較した。

結果：八重山諸島の男児の体長は全国基準値に比べ、生後3，10，17，18か月において大きく、身長は3，17か月で大きく、統計的に有意（p<0.05）だった。女子の体重は3，4，17か月で大きく、身長は17か月で大きく、3歳前半で小さく、統計的に有意（p<0.05）だった。

結論：本研究により、八重山諸島の小児の体格は、2歳未満では全国基準より決して小さくないが、3歳になると小さくなることが分かった。

加藤則子 国立保健医療科学院統括研究官
薗本秀美 国立健康・栄養研究所栄養教育研究部長
衛藤隆 日本子ども家庭総合研究所所長