< Review >

Disaster epidemiology: Assessing the health impacts of environmental public health disasters

Erik R. Svendsen

Department of Public Health Sciences, Medical University of South Carolina

Abstract

Introduction: Although disaster epidemiology is essentially recognized as the use of epidemiology in disaster settings, it now has unique methods and tools applicable only within public health disaster settings. Herein I will briefly describe the history and development of disaster epidemiology, its unique characteristics, and illustrate its potential to both respond to and learn from public health disasters within the current literature.

Methods: This literature review was used to motivate the potential application of disaster epidemiology more extensively in the on-going disaster-related public health recovery and research within Fukushima after the 2011 radiological disaster, and preparedness activities to mitigate any such future event. The PubMed electronic database for medical journals was used exclusively to identify literature suitable for inclusion in the literature review paper using the following search terms anywhere in the article: disaster and epidemiology; “disaster epidemiology”.

Results: Disaster epidemiology can be used to understand the frequency and severity of disasters, to rapidly learn about the needs of the disaster population and intervene in those needs, and to learn how to minimize the public health impacts of future disasters: tracking, mitigating, and researching, accordingly. To date, the majority of journal articles have been focused on mitigating disasters (10 of the 19 papers).

Discussion: There was a consistent recognition of the applicability of epidemiology within disasters, as was evident in the large number of journal articles which included both the terms “epidemiology” and “disaster”. However, that did not translate over to an understanding of “disaster epidemiology” as a sub-discipline because only 19 articles were focused on that concept. Within those there was variability in how the term was being used. More work is needed to better educate the scientific and public health community about the unique niche which disaster epidemiology plays within public health disaster management and preparedness.

Conclusions: Disaster epidemiology is a unique sub-discipline which can help advance the tracking, mitigation, and research of public health disasters. Further training and development of this sub-discipline within epidemiology training programs could help reduce the burden of disasters on public health and advance our understanding of unique environmental exposures within disaster settings.

keywords: disaster, epidemiology, public health, environmental

(accepted for publication, 26th December 2017)
I. Introduction

A disaster is in essence any natural or technological event which causes exposures, illnesses, injuries, and deaths while overwhelming the capacity of the existing public health infrastructure[1-3]. The prevalence of large natural disasters has been increasing over the past several decades[4]. Similarly, technology disasters, or disasters associated with a human breakdown in a technological system, such as a large industrial explosion, have been increasing in both frequency and severity over the past few decades. As our human population and population density continue to increase so does the probability that large populations will be increasingly impacted by various types of disasters. Therefore, the public health community needs to be prepared for such disasters, and have established tools in place to help manage public health disasters. But research is needed in disasters, also; often disasters can provide unique settings for human health research which cannot be done in experimentally. Dominici, et al. [5], clarify this common view in their statement “as perverse as it might sound, epidemiologists must view disasters as important opportunities to learn about the etiology of disease”. In 2013 a high-profile editorial was published in the New England Journal of Medicine calling for research within public health disasters [6]. One of the tools which can both assist with the management of and research within public health disasters is disaster epidemiology.

There has always been a recognition that epidemiology has a place in modern public health disasters, yet not so for it as a sub-discipline within epidemiology. The use of epidemiological methods within disasters has evolved over the past 70 years such that it is now a distinct sub-discipline within epidemiology. Although disaster epidemiology is essentially recognized as the use of epidemiology in disaster settings [7], it now has unique methods and tools applicable only within public health disaster settings. Herein I will briefly describe the history and development of disaster epidemiology, its unique characteristics, and illustrate its potential to both respond to and learn from public health disasters within the current literature. This literature review will be used to motivate the potential application of disaster epidemiology more extensively in the on-going disaster-related public health recovery and research within Fukushima after the 2011 radiological disaster [8], and preparedness activities to mitigate any future event such as that.

II. Methods

The PubMed electronic database for medical journals [9] was used exclusively to identify literature suitable for inclusion in the literature review paper. I used the following search terms anywhere in the article: disaster and epidemiology; “disaster epidemiology”. The literature was last accessed in mid-November, 2017. Only English-language journal articles were considered.

III. Results

There were 13,453 journal articles for the terms “disaster” and “epidemiology”. When searching for the string of words “disaster epidemiology” there were much fewer: 3,646 anywhere, 52 in the title, and only 19 with disaster epidemiology as the focus. All 19 articles were accessed and reviewed in addition to select articles from the broader literature search.

Disaster epidemiology can really be classified into three classes: the epidemiology used to track the incidence of disasters, epidemiology used to mitigate the consequences of disasters, and epidemiology to perform etiological research within disasters (Table 1). In other words disaster epidemiology can be used to understand the frequency and severity of disasters, to rapidly learn about the needs of the disaster population and intervene in those needs, and to learn how to minimize the public health impacts of future disasters. To simplify these classes, I will call them tracking, mitigating, and researching, accordingly. To date, the majority of journal articles have been focused on mitigating disasters (10 of the 19 papers).

The first use of the term “disaster epidemiology” within the title of a journal article was in 1975 [10-12]. However, disaster epidemiology goes back much further than that, to even the structured tracking of death, disease, and injuries from wars, epidemics, and natural disasters in the 19th and early 20th centuries [13]. Some long-term assessments

<table>
<thead>
<tr>
<th>Tool</th>
<th>Tracking</th>
<th>Mitigating</th>
<th>Researching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event surveillance</td>
<td>Rapid Needs Assessment</td>
<td>Cohort studies</td>
<td></td>
</tr>
<tr>
<td>Descriptive studies</td>
<td>Cluster Analyses</td>
<td>Case-control studies</td>
<td></td>
</tr>
<tr>
<td>Ecological studies</td>
<td>Outbreak Assessment</td>
<td>Intervention studies</td>
<td></td>
</tr>
<tr>
<td>Case studies</td>
<td>Event registries</td>
<td>Quasi-experimental studies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Public Health Practice</th>
<th>Human Subjects Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event surveillance</td>
<td>Rapid Needs Assessment</td>
<td></td>
</tr>
<tr>
<td>Descriptive studies</td>
<td>Cluster Analyses</td>
<td></td>
</tr>
<tr>
<td>Ecological studies</td>
<td>Outbreak Assessment</td>
<td></td>
</tr>
<tr>
<td>Case studies</td>
<td>Event registries</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Classes and tools within Disaster Epidemiology
of soldiers exposed to war gases during World War I were performed [14], but not using structured epidemiological methods [14]. Modern designs were first incorporated into researching epidemiology within disasters in the massive Lifespan cohort study of the survivors from Hiroshima and Nagasaki [15]. But such early adaptations of epidemiologic methods to disaster settings were not classified as disaster epidemiology, rather just epidemiology within a disaster population. Disaster epidemiology was incubated through a series of humanitarian disasters and wars in the 1950s and 1960s such that by the mid-1970s there were new epidemiological methods which were well-suited for mitigating the impacts of disasters and humanitarian crises on human health [16-19], most notably the rapid needs assessment survey [20-22]. However, these methods were very slowly adopted across the disaster management community within the 1980s [21,23-25]. On the researching side of disaster epidemiology, epidemiology began to be used as a powerful research tool in the Bhopal disaster [26,27], Mt. St. Helens eruption [28-30], and multiple natural disasters throughout the 1980s and 1990s. Larger disasters in the early 2000s helped to further develop the disaster epidemiology sub-discipline, especially the 9-1-1 and Hurricane Katrina disasters in the USA [31,32]. Yet the needs to balance researching, mitigating, and tracking public health within disasters had been identified as a significant gap in our international disaster management processes even just five years ago [6]. Since then new developments have been made to support the researching class within disaster epidemiology [4], and new funding mechanisms and associated survey tools are available for many to do expedited research following disasters, including a rapid human subjects review process [4].

Now there are multiple methods which are available to epidemiologists for tracking, mitigating, and researching public health impacts within disaster populations. The full spectrum of epidemiology designs can be used, from descriptive (e.g. cluster analysis), observational (e.g. case-control), quasi-experimental (e.g. interrupted time series), to experimental (e.g. intervention study). These can be applied within the public health practice or human subjects research context. But it is important to understand the ethics behind these activities. In public health practice the focus is on what you can give to the disaster population through rapid assessment of disease, injury, deaths, and resource needs such that the impact of the disaster is mitigated. In essence the patient is the disaster population, and disaster epidemiology is used to treat the ‘patient’. In human subjects research you are trying to understand what lessons can be taken away from this event and used to better prepare for the next disaster. So it is important to remember that disaster populations have already had much taken away from them, and they should first be treated as a disaster patient and not a research subject. Delicate balance is needed to navigate the needs for both learning from a disaster and helping those within the disaster population [33]. The disaster epidemiology focus must always be on what should be done, not simply what could be done. There are always many studies which could be done in disaster populations. But which studies would best help the disaster populations while advancing improved scientific understanding? Those are the studies which should be done.

The 19 journal articles purely focused on “disaster epidemiology” within their title were regarding disasters worldwide [5,10-12,24,34-47]. The last article to really discuss disaster epidemiology as a sub-discipline within epidemiology was in 2005 [5,40]. Disaster epidemiology was not brought into prominence until the 1990 editorial in the Lancet [47]. Much of that was due to the progress that had been made in addressing the problems with disaster management highlighted in previous articles in the 1970s [39]. The problems with disaster management and the insufficient use of disaster epidemiology methods were collectively a significant impetus behind the World Health Organization selecting the 1990s as the decade during which it was hoped that we would collectively reduce the frequency and severity of disasters, especially in the developing world [47]. So it is not a surprise that the number of disaster epidemiology articles increased in the 1990s. Those were predominantly focused on international crises within resource-poor nations. But natural disasters hit more economically developed countries within the 1990s, also, both challenging and refining the newly developed disaster epidemiology mitigation methods [37,44,48-53]. But disaster epidemiology was first applied to terrorism in the 1990s, also, and later refined in the 2000s after the World Trade Center attacks [31,54-57]. With the World Trade Center disaster of 2001 came a renaissance in researching disaster populations which has continued to this day with dozens of studies having been published from research within that disaster population. Yet there has been a notable gap in the literature since then of any articles explicitly focused on disaster epidemiology within their title and content. Yes, many disaster epidemiology cases have been described and research studies performed since then. But no article systematically discussed the sub-discipline of disaster epidemiology in an engaging way. Regardless, much has been learned since that first ‘call to arms’ paper in 1975, and many methods developed for the tracking, mitigating, and researching applications of disaster epidemiology.

Tracking large disasters has become implicitly easier in
the modern age of the internet and electronic disease and medical record systems. Likewise, mitigating disasters through the effective use of disaster epidemiology has become easier. Several new methods have helped to assist with that process. These include improvements in cluster analyses [58-62], other spatial models [58,59,63-65], syndromic surveillance [66-69], and community needs assessments [70-75]. However, while the methods available for mitigating disasters through epidemiology have improved significantly, disaster epidemiology research methods have developed exponentially.

Epidemiological research studies of environmental disasters are uniquely poised to accomplish novel etiologic research [5], especially when a longitudinal cohort design is used [76]. However, such designs usually require large sample sizes. A more innovative and powerful design is the natural experiment [77,78], which can be used even in smaller disaster populations. Such a quasi-experimental design can provide results comparable to an experiment and may be the strongest study design available when an experiment is unethical. Other quasi-experimental methods are quite robust, also [79-83]. But disaster epidemiology research has its challenges.

Disaster effects are wide-ranging and can go beyond the individual [28-30,84-92]. Environmental disasters, like Fukushima, usually involve a breakdown in man-made systems [87,93,94], which may result in community mistrust [87]. Such mistrust can result in selection biases due to poor participation [95], high attrition, volunteer bias, and loss to follow-up from emigration [76,96-101]. On the contrary, communities may be resilient [93]. Recovery efforts have proven more effective when the community is engaged [93,102-104]; then science can follow [86,105,106]. Community-based participatory research (CBPR) can do that [94,107]. Disaster communities are often socio-economically disadvantaged [108]. Therefore, it is imperative to fully engage the study community within the scientific approach, building trust, and establishing local credibility prior to initiating any studies [109]. This approach was chosen by Japanese scientists in Hiroshima and Nagasaki a priority to focus on the public health needs first and the science second before any study was ever even started with the USA, now resulting in the longest prospective cohort study in history [110]. CBPR has been used when studying a smaller disaster community, also [111-119]. Therefore, CBPR should be used when studying a disaster community [111,112,114,116,117,119-122]. Collectively, disaster epidemiology tracking, mitigating, and research methods have improved significantly since 1975. Most recently, there are now established templates and tools for performing public health service-based assessments to mitigate and track disasters [67,68,71,72,123-127], and even to study unique risk factors within them [4,128].

IV. Discussion

There was a consistent recognition of the applicability of epidemiology within disasters, as was evident in the large number of journal articles which included both the terms “epidemiology” and “disaster”. However, that did not translate over to an understanding of “disaster epidemiology” as a sub-discipline because only 19 articles were focused on that concept. Within those there was variability in how the term was being used. Some were using it clearly under the “tracking” class of definitions, others mitigating, while others were using for researching within disasters. More work is needed to better educate the scientific and public health community about the unique niche which disaster epidemiology plays within public health disaster management and preparedness.

However, this literature review has limitations. Only one electronic library database was reviewed (PubMed), and in only one language (English). This may have underestimated the number and types of journal articles which described disaster epidemiology. Further literature review is needed within other languages which use other electronic library databases to accomplish a more comprehensive assessment of the use of disaster epidemiology within public health and medicine. In the USA, disasters may or may not be officially declared major disasters by the US President [129]. If not, none of the provisions in the US federal disaster management regulations [130,131] are enacted and the affected US disaster population is to be served by other local/state resources. Hence, any support or study of the affected population must be funded through non-federal disaster appropriation mechanisms. Therefore, disasters which do not reach the threshold of a major disaster declaration within the USA may not receive sufficient support to sustain disaster epidemiology activities. Such disasters may, therefore, have an underestimation of their public health impacts and use of disaster epidemiology in the USA. Similar federal funding protocols can be found in other countries and may have similar effects on underreporting the use of and results from disaster epidemiology elsewhere. Lastly, many disaster epidemiology activities do not produce peer-reviewed publications in any language or reports which are archived within electronic library databases. Often disaster epidemiologists are so busy tracking, mitigating, and researching best practices for the disasters in which they are responsible for assisting that their work may not
be sufficiently recorded in archives which are available to the broader scientific and public health audience. Therefore, the results reported herein may vastly underestimate the application of disaster epidemiology within public health disasters worldwide.

V. Conclusion

Disaster epidemiology is a unique sub-discipline which can help advance the tracking, mitigation, and research of public health disasters. Further training and development of this sub-discipline within epidemiology training programs could help reduce the burden of disasters on public health and advance our understanding of unique environmental exposures within disaster settings. Expanding the current use of disaster epidemiology methods within the Fukushima disaster research and recovery efforts may be useful.

Conflict of Interest

The author has no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this article.

References


[23] Binder S, Sanderson LM. The role of the


[55] Centers for Disease Control and Prevention. Injuries and illnesses among New York City Fire Department rescue workers after responding to the World Trade
Disaster epidemiology: Assessing the health impacts of environmental public health disasters


Dietary supplementation with radionuclide free food improves children’s health following community exposure to (137)Cesium: a prospective study. Environ Health. 2015;14:94.


Huizink AC, Smidt N, Twisk JWR, Slottje P Smid T. Epidemiological disaster research: the necessity to include representative samples of the involved disaster workers. Experience from the epidemiological study air disaster Amsterdam-ESADA. Journal of Epidemiology and Community Health. 2006;60(10):887-889.


Svendsen ER, Whittle NC, Sanders L, et al. GRACE: public health recovery methods following an eruption.


エリック・スベンソン
サウスカロライナ医科大学公衆衛生科学部環境保健分野

抄録

「災害疫学」は、災害時に利用される疫学だと基本的には認識されている。しかし、公衆衛生上の問題をもたらす災害時に適用することから、他の疫学的な手法とは異なる特性を持つようになった。そこで、「災害疫学」の歴史を振りかえりその発展の経緯や災害疫学が持つ特性を概説する。また、関連する文献をレビューすることで、「災害疫学」が情報の集約によりいざという時に対応の効率化に役立つだけでなく、災害がもたらす影響をより深く学ぶことで次の事態によりよく備えられるようになる二つの側面の特徴を示す。

方法：2011年の東京電力福島第一原子力発電所災害に対する現在進行中の公衆衛生面での復興活動やそれを支える研究に対して、「災害疫学」をより広範に適用させることや将来新たな災害が発生した場合の対応措置の準備に役立たせることを意図して文献をレビューした。

結果：「災害疫学」は、追跡調査、影響緩和措置、調査といった手法等を介して、災害を定量的な面からその重大性を理解し、災害に見舞われた人々のニーズを迅速に把握し、そのニーズに対応するだけでなく、将来の災害による公衆衛生上の影響を最小限に抑える方法を学ぶために用いることができる。これまで、学術雑誌に掲載されたこの分野の論文の大部分は災害がもたらす影響の緩和に焦点を当てていた（19本中10本で）。

考察：「疫学」と「災害」の両方のキーワードを含む数多くの論文では、災害の中での疫学の適用性についての一貫した認識があった。しかし、19の論文のみがその概念に焦点を当てていたことは、「災害疫学」が疫学のサブカテゴリーとして認識されていないことを示している。しかも、これらの文献では、用語の使い方がばらつきがあった。災害対応での公衆衛生上の課題やそれへの備えの観点から、本来、対応が求められるものの見過ごされがちな分野について、「災害疫学」の意義に関して科学や公衆衛生コミュニティの理解を深めるためには、さらにその学問体系について概念整理を深める必要がある。

結論：「災害疫学」は、疫学の中で特徴のあるサブカテゴリーで、災害時の公衆衛生対応として、追跡的な調査、被害軽減、研究を進める上で役立つ概念である。疫学の重要なサブカテゴリーである「災害疫学」についても教育や手法開発を進めることは災害時における公衆衛生上の課題を軽減し、災害での対応で課題にもなる環境中の有害物質への災害時の曝露の理解を促進するのにも役立つ。

キーワード：災害、疫学、公衆衛生、環境