
 GENERAL BOARD OF HEALTH.

MEDTOAL COUNOLT.

APPENDIX TO REPORT

MSLDTHEOUED MHABDELETK OF Pae

COMDITITE FOR SOLENTELIO INQUIRIES

We menarmon To

THE CHOLERA-EPIDEMIC or 1854.

LONDON:
GRNTTED BY GEORGE E EYRE SND WLIEAB SPOMTSWOODE,
RamTERS To THE QUEEN'S MOST EXCELENT MEPAST.

GENERAL BOARD OF HEALTH.
MEDICAL COUNCIL.

APPENDIX TO REPORT

of the

COMMITTEE FOR SCIENTIFIC INQUIRIES

THE CHOLERA-EPIDEMIC OF 1854.

LONDON:
PRLNTED BY GEORGE E. EYRE AND WILLIAN SPOTTISWOODE printers to the queen's most excellent arajesty
for her majestys stationery office.
$\overline{1855}$.

1．Report upon the Meteorology of London，in relation to the Page Cholera Epidemic of 1853－4．By Mr．Glaisher．－－
2．Report on the Examination of certain Atmospheres during the Epidemic of Cholera．By Dr．R．D．Thomson．
3．Report on the Microscopical Examination of certain Atmos－ pheres during the Epidemic of Cholera．By Mr．Rainey．－
4．Report on a Sanitary Inspection of the Golden Square District． By Dr．D．Fraser，Mr．Thos．Hughes，and Mr．J．M．Ludlow．
5．Memorandum on the Sanitary Conditions of Bethlem Hospital and of the City House of Occupations．By Mr．Lawrence．－
6．Memorandum on Asiatic Cholera and other Epidemics，as in－ fluenced by Atmospheric Impurity．By Dr．Arnott．
7．Report on the Chemical Composition of Metropolitan Waters during the year 1854．By Dr．R．D．Thomson．－．
8．Report on the Microscopical Examination of different Waters （principally those used in the Metropolis）during the Cholera Epidemic of 1855．By Dr．Hassall．
9．Observations on the Filth of the＇ihames，contained in a addressed to the Editor of＂＇i＇he Times＂Newspaper．By

10．Report on the Chemical Examination of Rice－water Discharges． By Dr，R．D．Thomson．－－－－
1．Report on the Microscopical Examination of the Blood and Excretions，\＆c．of Cholera Patients．By Dr．Hassall．
12．Tables from a Report of the Middlesex Hospital，illustrating the relation of Consecutive Fevers to the Collapse and Dis－ charges of Cholera－－－－．．
13．Account of Twelve post－mortem Examinations．By Mr．G．W． Callender，of Bartholomew Hospital．
14．Tables of House－to－House Visitation in the Golden Square Districts．By Dr．Fraser，Mr．Ludlow，and Mr．Hughes．－ 313

国立公衆衛生院附属図書館	
受入先	
受入日	
登録番号	
所 在	
\because hrary，National Institute of Public Health	

No．I．
Report upon the Meteorology of London，in relation to the Cholera－Epidemic of 1853－4．By Mr．Glaisher．

INDEX．

Letter to the President of the General Board of Health－Page
Subjects of Investigation－\quad－\quad－－ 1
Names and Positions of Meteorological Stations，and Names of Observers
List of Instruments at each Station－$\quad-\quad-\quad=2$
Plan of Observation
Times of Observation at each Station－－－－ 3
Reduction of the Observations

Atmospheric Pressure

Table I．－Showing the Weekly Means of Atmospheric Pressure－
Table II．—Showing the Weekly Means of Barometric Pressure cor－ rected and reduced to Mean Sea Level－

Remarks on the preceding Tables－
Table III．－Showing the successive Maxima and Minima Readings of the Barometer in London，at the Level of the Sea－－ Remarks on the preceding Table
Table IV．－Showing the Mean Monthly Reading of the Barometer位 1841 to 1854 － Remarks on the preceding Table－

Temperature of the Air．

Method adopted for determining the Mean Temperature of the Air Table V．－Showing the Weekly Mean Temperature of the Air at the several Metropolitan Stations

Remarks on the preceding Table－－－－
Table VI．－Showing the Excess of Temperature at the Central Stations over the Means at the Boundary Station
Excess of London Temperature over that of the Boundary Stations
Table VII．＿Showing the Average Mean Daily Temperature of the
Air at Greenwich from July to December
Air at Greenwich from July to December－
Table VIII．－Showing the Weekly Excess or Defect of Tempera－
ture at the several Stations ture at the several Stations
Remarks on the preceding Table

Table IX.-Showing the Mean Monthly Temperature of the Air at Greenwich, from the Year 1841 to 1854 -
Remarks on the Temperature of the Year 1854; no decided influence upon the progress of Cholera can be attributed to the Temperature of the air
Method of determining the Diurnal Range of Temperature - -
Table X.—Showing the Weekly Means of Daily Maximum Temperature -
perature -
Remarks on the preceding Iable - ${ }^{-}$. Table X.-Sho

Remarks on the preceding Table
Table XII.-Showing the Weekly Means of Nightly Minimum Temperature

Remarks on the preceding Table
Temperature at Lond the Mean Weekly Excess of the Low Night
Remarks on the preceding Table
Table XIV.-Showing the Weekly Means of Daily Range of Temperature

Remarks on the preceding Table -
Table XV.-Showing the Mean Weekly Defect of the Daily Range of Temperature in London

Remarks on the preceding Table
Table XVI. -Showing the Lowest Temperature of the Air for cvery Day from July 1 to December 31, 1854, the Daily Ranges of Temperature, and Daily Comparison of the Weather for the same Period, at Lewisham and St. Thomas' Hospital

Remarks on the preceding Table
Table XVII.-Showing the Mean Monthly Range of Temperature at the Royal Observatory, Greenwich, for the Years 1841 to 1844 Remarks on the preceding Table

Temperature of the Thames Water.

On the Thames Water, its Impurities and the Method of determining its Temperature
Table XVIII.-Showing the Mean Monthly Temperatures of the Water of the Thames for the Year 1846 to 1854 -
Annual Variation of the Temperature of the Water of the Thames -
The High Temperature of the Thames Water accounts for Fog and Mist
Table XIX.-Whowing the Mean Daily Temperature of the Water of the Thames from June 1 to December 31, 1854-

Table XX.-Showing the Excess of the Night Temperature of the Water of the Thames above the Lowest Night Temperature of the Water of the Hames above the L 1854 Night Hemperature of the Remarks on the preceding Table

Humidity of the Air.

Table XXI.-Showing the Weekly Mean Temperatures of Evaporation - Showing the Weekly Mean Temperatures of the
Dable Point--Showng the
 Vapour -
Remarks on the preceding Tables
Table XXIV.-Showing the Monthly Differences of the Temperature of Evaporation, Dew Point, and Elastic Force of Vapour in the Year 1854
Table XXV.-Showing the Weekly Means of Humidity of the Air -- - - $\quad-\quad-$
$\begin{array}{llllll} \\ \text { Remarks on the preceding Table - } & - & - & - & 52\end{array}$
able XXVI.-Showing the Monthly Difference of the Humidity of the Air from the Average for the Year 1854
Table XXVII.-Showing the Weekly Mean Weight of Vapour in a Cubic Foot of Air for 1854
Table XXVIII.-Showing the Monthly Difference from the Average of the Weight of Vapour in a Cubic Foot of Air for 1854
Table XXIX.-Showing the Monthly Difference from the Average of the Weight of a Cubic Foot of Air for 1854 -

Direction of the Wind.

Methods of Observation
Table XXX.—Showing the general Direction of the Wind at the several Stations

Remarks on the preceding Table - - -
Table XXXI—Showing the Frequency of the several Winds

Table XXXI—Showing the Frequency of the several Winds
Remarks on the preceding Table -5.

Force of the Wind.

Method of converting estimated Force of the Wind to Pounds Pressure on a Square Foot of Surface -
Table XXXII.-Showing the mean estimated Force of the Wind at the several Stations - - -

Remarks on the preceding Table -
Table XXXIII.-Showing the Mean Force of the Wind by estimation in Pounds Pressure on a Square Foot of Surface at the Boundary and Central Station

Remarks on the preceding Table
Velocity of the Air.
Table XXXIV.-Showing the average Daily Horizontal Movement of the Air, from July to December, at the Royal Observatory, Greenwich
Table XXXV.-Showing the Daily Horizontal Movement of the Air at Greenwich from July 1 to December 31, 1854

Air at Greenwich from July 1 to December
Remarks on the preceding Tables 57

Table showing the Daily Horizontal Movement of the Air, reduced Page to the Cardinal Points, and Remarks on it
Table XXXVI.-Showing the Comparison of the Average with the Daily observed Horizontal Movements of the Air from July to December 1854

Remarks on the preceding Table - - - - - -

Electricity.

Remarks on Instruments used
Table XXXVII.-Showing the Electricity of the Atmosphere at the several Stations from September to December 1854 - Remarks on the preceding Table

Ozone.

General Remarks, Discovery, Method adopted for the Determination of its Pressure and Amount of Intensity, \&c.
Table XXXVIII.-Showing the Weekly Amount of Ozone at the several Metropolitan Stations from September to December

Remarks on the preceding Table

Rain.

Table XXXIX.—Showing the Weekly Fall of Rain from July to December 1854 -

Remarks on the preceding Table
Tabie XL.-Showing the Monthly Fall of Rain, at the Royal Observatory, Greenwich, from the Year 1840 to 1854 -
Table XLI.—Showing the Monthly Fall of Rain, at St. John's Wood, from the Year 1840 to 1854
Table XLII.—Showing the Average Monthly Fall of Rain over London
Table XLIII.-Showing the Monthly Fall of Rain over London in the Year 1854
$\begin{array}{cc}\text { the Year } 1854-\quad-\quad- & - \\ \text { Remarks showing the Deficiency of Rain in the Year } 1854-\end{array}$

Clouds.

Amount and Scale of Estimation
Comparison of the Meteorology of London, Worcester, Liverpool, Dunino, and Arbroath.
Reasons for selecting the above Stations for comparison with London . 78 Conditions most favourable to Health
Main Causes of Insalubrity in Towns
Table showing the Positions of the Stations and the Names of Observers

- - 79

ReIV.-Showing the Weekly Means of Atmospheric Pressure Remarks on the preceding Table
Table XLV.—Showing the Weekly Means of Daily Maximum Temperature

Remarlis on the preceding Table

No. I.
Report
upon the Meteorology of London, in relation to the Cholera-Epidemic of 1853-4. By Mr. Glaisher.

Lewisham, March 8, 1855

Is the Report upon the Meteorology of London, and its relation to the epidemic of Cholera, which I have the honour to submit to you, I have endeavoured to carry out the different investigations you considered desirable, as sketched in your several letters to me.
The Observations were made by the gentlemen whose names appear in the Report; their reduction and formation into Tables, and the drawing of the Diagrams, were performed under the superintendence of Mr. William Richardson, the Assistant Secretary of the British Meteorological Society. All these duties were performed with care and ability.

I have the honour to be, Sir,
Your obedient servant,
James Glaisher,

Subjects of Investigation.

The determination of Atmospheric Pressure over the Metropolitan Districts.
The Maximum Temperature by Day.
The Minimum Temperature by Night
The Daily Range of Temperature.
The Mean Temperature of the Air.
The Mean Temperature of the Thames Water.
The Mean Temperature of Evaporation.
The Mean Temperature of the Dew Point
The Mean Elastic Force of Vapour.
The Mean Degree of Humidity.
The Mean Weight of Vapour in a certain mass of Air.
The Mean Weight of the same mass of Air under its Mean
Temperature, Humidity, and Pressure.
The Amount and Distribution of Ozone.
The Amount and Distribution of Electricity
The Fall of Rain.
The Direction, Force, and Velocity of the Wind.
The Comparison of the Meteorological Phenomena for London compared with those simultaneously observed at some towns in the country, and,

The Investigation into the Meteorology of the years 1832, 1849, and 1854 in relation to Cholera in the Metropolitan Districts.

An accurate determination of these elements was found essential to the prosecution of the inquiry, and it subsequently proved desirable to institute a careful comparison of each subject with its average values from a long series of years.

Nues and Positions of Meteorologichl Stations, and Naifes of Observers.

Name of Station.	Latitude.	Longitude.	Approx Height above Sea.	Names of the Observers.
			Feet.	
Crystal Palace, Sydenham	51.27 N.	0. 4 W .	300 ?	Under the superintendence of George Grove, Esq., secretary.
Lewisham	51.28	0. 1 W .	82	W. Richardson, Esq., Assistant Secretary, British Meteorological Society.
Royal Observatory	51.28	0. 0	159	The Astronomer Royal.
Bexley Heath -	51.28	0.10 E .	210	Flaxman Spurrell, Esq.,
Brixton Road	51.28	0. 6 W .	350	Francis Boyle Garty, Esq., M.R.C.S.
Camberwell -	51.28	0. 5	15	William Searle, Esq.
Battersea -	51.29	0.10	15	James Grifin, Esq.
$\begin{array}{cc}\text { Dreadnought } \\ \text { Ship } & \text { - }\end{array}$	51.29	0. 1	20	Captain Sanders, R.N.
*Bermondsey -	51.29		${ }^{0}$	Mr Martin, Esq. ${ }^{\text {a }}$
Millbank Prison -	51.29	0.	15	Mr. R. J. Gould, under the superintendence of Dr. Baly.
Consumption Brompton- Hospital,	51.29	0.10	20	Vertue Edwards, Esq., M.R.C.S.
General Board of Health, Whitehall.	51.30	0. 7	20	J.F. Campbell, Esq., and John C. Hailes, Esq.
St. Thomas' Hospital -	51.30	0. 5	60	R. D. Thomson, Esq. ; M.D.; F.R.S., L. \& E.; M.B.M.S.
Poplar -	51.30	0.	20	W. J. Bain, Esq , MD.
Guildhall	51.30	0. 5	40	Frederick SingletonKnott, Esq
General Registry Office, Somerset House.	51.30	0. 7	30	William Clode, Esq., under the Superintendence of the Registrar General.
St. Giles' Workhouse	51.30	0. 8	20	William Bennett. Esq., M.D.
Chiswell Street Brewery	51.30	0. 5	96	Walter Fletcher, Esq.
St. Mary's Hospital -	51.30	0.10	126	William Copney, Esq.
Bethnal Green	51.31	0. 3	20	
St. John's Wood -	51.31	0.11	150	George Leach, Esq., President B.M.S.
St. Pancras	51.31	0. 8	40	Charles Worrell, Esq.
Highgate - -	51.32	0.10	420	Dr. Sutherland, Inspector General.
Enfield Vicarage - -	51.39 N .	0. 5 W .	100	Rev. J. M. Heath, M.A., M.B.M.S.

The instruments consisted of
A Dry Bulb Thermometer,
A Wet Bulb Thermometer,
A Maximum Thermometer,
A Minimum Thermometer,
at all the stations.

An Electrometer in addition at six stations
A Barometer in addition at seven stations.
A Rain Gauge in addition at nine stations.
The instruments were all previously compared with standards, and their index errors exactly determined, under my own superintendence. The stations at Sydenham, Lewisham, Greenwich, Bexley, Brixton, St. Thomas's Hospital, Chiswell Street, St. Mary's Hospital, St. John's Wood, and Enfield Vicarage, were already supplied with instruments; Dr. Baly at Millbank, the President of the Board of Health, and the Registrar General, furnished themselves with instruments for this inquiry, and the instruments were furnished by the Board of Health to Camberwell, Battersea, Dreadnought Hospital Ship, Bermondsey,* Brompton, Poplar, Guildhall, St. Giles, Bethnal Green, St. Pancras, and Highgate.

Plan of Observations.

To obtain a tolerable approximation to the laws of the distribution of temperature, humidity, \&c., within a few weeks, it was essential that every precaution should be adopted to ensure the most perfect comparability of results. To this end the instruments selected were uniformly good, and were placed for the most part by myself at each station, in the best position the observer could command; personal instructions were given with regard to instruments and the method of recording observations, and were repeated till the observer had acquired the power of observing with accuracy.

It was desirable that the plan of observation should be the least onerous to give the required information. A plan of simultaneous observations I found to be incompatible with the various avocations of my corps of observers. For the same reason I was forced to content myself in some cases with one set of observations daily, but for the most part I succeeded in obtaining two, and in a few cases as many as three sets daily. The following Table shows the times of observation at the several stations.

Name of Station.			Times of Observation.
Crystal Palace	-	-	$9 \mathrm{a} . \mathrm{m}$. and 3 p.m.
Lewisham -	-	\because	$9 \mathrm{a} . \mathrm{m}$. and 3 p.m.
Royal Observatory	-	-	9 a.m. noon, 3 and 9 p.m.
Bexley Heath	-	-	9 arm . and 9 p.m.
Brixton Road	-	-	$11 \mathrm{a} . \mathrm{m}$.
Camberwell -	-	-	$9 \mathrm{a} . \mathrm{m}$. and 3 p.m.
Battersea -		-	$9 \mathrm{a} . \mathrm{m}$. and 3 p.m.
Dreadnought Hospital Ship	-	-	9 a.m. 3 and 9 p.m.

* No observation was received from this most important station. I much regret that Mr. Martin did not signify to me his reluctance or inability to discharge the duties of an ocality.

Name of Station.			

Reduction of the Observations.

At the end of each week the observations were forwarded to me. The first step in their reduction was the examination of every reading in comparison with all others taken at about the same time; the second was the application of index errors; corrections for diurnal range; and all necessary corrections and calculations to deduce the mean daily value of each elcment of investigation. The weekly means of the daily values were next taken, and the following Tables formed.

I will now proceed to discuss the results of each element separately.

Atmospleric Pressure.

Table I. contains the weekly means of the observed readings of the barometer, corrected for capillarity, index errors, diurnal range, and reduced to the temperature of 32°.
Table I.-Weikly Means of Atmosfieric Prebsure.

The numbers in the lower line show the weekly pressure of the atmosphere over the metropolitan districts at the level of the sea. They are not remarkable till the second week in August: the pressure then exceeded 30 inches, and, with the exception of a slight defect (0.032 in .) in the following week, it exceeded 30 inches in each succeeding week till the end of September. The pressure during the first and second weeks in September was remarkably high, exceeding $30 \frac{1}{2}$ inches in both weeks; it decreased in the third week, and increased in both of the following weeks. It was low in the last two weeks in October, very high in the first two weeks in November, low in the last two weeks, and afterwards variable.

By comparing the numbers at the several stations, it will be seen, as might have been expected over so small a space as the metropolis, that the atmosphere has been evenly distributed. It will, therefore, be necessary to trace the successive maxima and minima of atmospheric pressure from one station only. They are recorded in the following Table.
table II.-Showing the successive Maxnia and Mitma Readings of the Baroneter in London, at the Level of the Sea.

Montr, Dar, and Hocr.	Readings of Barometer ; successive Maxima and Minima.	Difference between successive Readings.	
		Increase.	Decrease.
1854:	in.	in.	in.
July 1 - 9 a.m. -	$29 \cdot 927$	-088	
2-11 a.m. -	30.015	-088	-395
$4-3$ p.m.	$29 \cdot 620$	-210	
8 - noon	$29 \cdot 830$		-043
9 - 1 p.m. -	29.787	-190	
$10-9 \mathrm{p} . \mathrm{m} .-$ $12-9$ am. -	$29 \cdot 977$ $29 \cdot 855$		-122
13 - noon	$29 \cdot 906$	-051	- 116
14 - 3 p.m. -	$29 \cdot 790$	-358	$\cdot 116$
16 - 11 a.m. -	30-148	358	-138
18 - 3 p.m. -	$30 \cdot 010$	-262	
$22-9 \mathrm{a} . \mathrm{m} .-$	$30 \cdot 272$	262	$\cdot 172$
25 - noon -	$30 \cdot 100$	-160	
28 - 9 a.m. -	$30 \cdot 260$	160	-558
31-9 p.m. -	$29^{\circ} 702$	-448	558
Aug. 6 - 11 p.m -	$30 \cdot 150$ $29 \cdot 845$. 448	-305
10 - 3 p.m. -	$29 \cdot 845$	-182	
11-9 p.m. -	$30 \cdot 027$ $29 \cdot 792$		- 235
18 - 9 p.m. -	$30 \cdot 215$	-423	-405
21 - 9 p.m. -	$29 \cdot 810$	-385	405
23 - 9 a.m. -	$30 \cdot 195$		-239
24 - 3 p.m. -	$29 \cdot 956$ $30 \cdot 515$	-559	239
$23-9$ a.m. - $30-9$ p.m.	$30 \cdot 515$ $30 \cdot 187$		-328
Sept. 3 - 9 a.m. -	$30 \cdot 448$	$={ }^{-261}$	

Table III.-Successive Maxima and Minima Readings, \&c.-cont.

Month, Dat, and Hodr.	Readings of Barometer; successive Maxima and Minima.	Difference between successive Readings.	
		Increase.	Decrease.
1854:	${ }_{\text {in }}{ }_{30}$.	in.	in.
Sept. 3 - 9 a m.m. -	$30 \cdot 448$ $30 \cdot 370$		- 078
4 5	$30 \cdot 503$	-133	-275
9 - 3 p.m. -	$30 \cdot 228$	$\cdot 057$	
$10-9$ a.m. -	$30 \cdot 285$		- 520
14 - 9 a.m. -	$29 \cdot 765$	- 268	
$15-9$ a.m. -	$30 \cdot 033$		- 175
16 - 9 p.m. -	$29 \cdot 858$	-332	
18 - noon	30•190		-210
20 - noon	$29 \cdot 980$	-418	
22 - 9 a.m. -	30•398		-291
24 - 1 p.m. -	$30 \cdot 107$	-333	
26 - 9 a.m. -	$30 \cdot 440$		- 293
$29-3$ p.m. -	$30 \cdot 147$	-129	
Oct. 1 - 10 a.m. -	30.276		-471
$3-9$ a.m. - $3-9$ p.m.	29-870	-165	-400
5 - 3 p.m. -	$29 \cdot 570$	- 568	
7 - 9 p.m. -	30•138		-378
9 - 9 a.m. -	$29 \cdot 760$	-855	
$13-9$ a.m.	$30 \cdot 615$		1-333
18 - 9 a.m.	$29 \cdot 282$	- 560	
19 - noon	$29 \cdot 842$		-422
$20-3$ p.m. -	$29 \cdot 420$	-267	
$21-9$ p.m. -	$29 \cdot 687$		-640
25 - 3 p.m. -	29.047	1-359	
27 - 9 p.m. -	$30 \cdot 406$		-224
29 - 10 a.m. -	$30 \cdot 182$	-170	
29 - 9 p.m. -	$30 \cdot 352$		-227
31 - 9 a.m. -	$30 \cdot 125$	-337	
Nov. 1 - 9 p.m. -	$30 \cdot 462$		-399
5 - 10 a.m. -	$30 \cdot 063$	- 527	
7 - noon	$30 \cdot 590$		- 511
11 - 9 a.m.	$30 \cdot 079$	-231	
$12-3$ p.m. -	$30 \cdot 310$		1-252
16 - 9 a.m. -	$29 \cdot 058$	$1 \cdot 157$	
$20-9$ a.m. -	$30 \cdot 215$		1-227
$22-3$ p.m. -	$28 \cdot 988$	1-122	
$27-9$ p.m. -	- $30 \cdot 110$		-851
29 - 9 p.m. -	$29 \cdot 259$	-325	
$30-9$ a.m. -	29-584		- 334
$30-9$ p.m. -	$29 \cdot 250$	-837	
Dec. 2 - 9 p.m. -	$30 \cdot 087$		- 255
3 - 9 p.m. -	$29 \cdot 832$	-281	
$4-$ noon - $5-9$ p.m. -	- $\begin{aligned} & 30 \cdot 113 \\ & 29 \cdot 385\end{aligned}$		-728

Table III-Successive Maxima and Minima Readings, \&e.-cont.

Mostir, Dit, and Hocr.	Readings of Barometer; successive Maxima and Minima.	Difference between successive Readings.	
		Increase.	Decrease.
1854:	in.	in.	in.
Dec. 5-9 p.m. -	$29 \cdot 385$	-863	
7-9 p.m. -	$30 \cdot 248$		-750
9 - 9 a.m. -	$29 \cdot 498$	$\cdot 624$	
$10-10$ p.m. -	$30 \cdot 122$	6.1	-148
11 - 9 p.m. -	$29 \cdot 974$	-296	
13 - 9 a.m. -	30.270		- 272
14 - 3 p.m. -	$29 \cdot 998$	-095	
$14-9$ p.m. -	$30 \cdot 093$	O05	-309
16 - 9 a.m. -	$\because 9.784$	$\cdot 235$	
17 - 10 a.m. -	$30 \cdot 019$		-982
18 - $9 \mathrm{am} . \mathrm{m}$ -	$29 \cdot 037$	-ヶヶ4	
19 - noon -	$29 \cdot 818$	174	$\cdot 350$
$20-9 \mathrm{arm}$. -	$29 \cdot 461$	$\cdot 726$	
21 - 9 a.m. -	30-157		-449
$22-9$ p.m. -	$29 \cdot 738$.245	
23 - 9 a.m. -	29•983		-323
25 - $11 \mathrm{a} . \mathrm{m} .-$	29•660	-897	
29 - 9 p.m. -	30-557		

The numbers in the second column of this Table give the reading of the barometer on the passage of the anterior and posterior troughs, as well as the crest of every ware of air that passed over the metropolis from July to December; the numbers in the third column show the difference of readings between the passage of the anterior trough and the crest, and those in the last, the difference between the crest and posterior trough. The difference between the numbers in the first column slows the rapidity of the motion of the ware.

In considering the obserrations, nothing very peculiar presents itself till towards the end of August, till which time a number of small waves only had passed. The readings were remarkable from the end of August till September 10, indicating a dense atmosphere. On August 28, September 3, and September 5, the crest of three waves passed over London, and the pressure was about $30 \frac{1}{2}$ inches at each transit. Another remarkable instance of continuous high readings took place between September 22 and October 1. In October, the maximum pressure during the period took place, viz., 30.615 inches. The anterior trough of this wave passed on the 9 th, 30.615 inches. The anterior trough of this wave passed onl the 9 th,
the crest on the 13 th, and the posterior trough on the $\overline{8}$, the crest on the 13th, and the posterior trough on the 18th; at the
latter time, the barometer reading was 1.333 inches less than on the passage of the crest. Between October 25 and 27 the most rapid change of reading within the period of observation took place, amounting to $1 \cdot 359$ inches within $2 \frac{1}{4}$ days.

From November 12 to the end of the month large variations of reading were more continuous than at any other time; and in December the variations of pressure were frequent, but not to large amounts.

The most remarkable waves within the period of observation were those which took place in November, the crests of which passed on the 12th, 20th, and 27 th; the readings were $30 \cdot 31$ inches, 30.21 inches, and $30 \cdot 11$ inches respectively; each successive maximum being smaller than the preceding. The trough of these waves passed on the 16 th, 22 d , and 29 th; the readings were 29.06 inches, 28.99 inches (which was the lowest reading within the period of observation), and $29 \cdot 26$ inches successively.

It is now necessary to compare the observed pressure with its normal value. For this purpose I have several series of observations, all agreeing with each other, but two only which extend so far back as 1841 , viz., those of George Leach, Esq., and the Rojal Observatory, Greenwich. The following Table shows the mean monthly return for a period of 14 years as determined from these stations:-

$690.0-$	$800.0+$	$850.0+$	$661.0+$	FOI. $0+$	$210.0+$	$890.0-$	6II.0-	998.0 +	$807.0+$	266.0 +	411.0-	
It 6.6 G	106.6\%	268.68	70\%.08	690.08	086.66	806.66	078.66	s¢t.08	698.08	¢18.08	164.62	ๆ¢8
$\underline{0+6.66}$	${ }_{868.67}$	${ }_{688.68}$	${ }^{900} 008$	896.67	896.65	196.66	696.66	868.66	996.6\%	666.66	806.66	- surodi
010.08	868.66	688.66	$\underline{100}$							869.66	8r2.6\%	¢98I
246.65	¥10	${ }^{184.68}$	90	996.6 z	106.6z		266.68 696.63	888.60 81 L .08	081.08	080.08	692.66	\%981
T94.68	$889.6 \overline{6}$	038866	216.66	788.6\%	060.08	882.6\%		${ }_{668.66}$	842.65	¢00.08	918.63	1981
808.08	¢96.6z	668.65	861.08	890.08	188.63	890.08	¢90.08	${ }^{668} 66$	842.06	${ }^{100.08}$	280.08	098I
280.08	${ }^{106.68}$	F98.66	801.08	096.66	796.66	690.08	288.66	294.6\%	ธิढ.08	100.08	${ }^{2} 800.06$	6781
896.66	916.68	416.68	076.68	¢10.08	\%96.6\%	tp0.08	686.66	$069 \cdot 66$	880.08	626.08		
086.66	896.68	618.66	¢00.08	906.68	600.08	918.65	660.08	692.	849.65	069.66	686.65	Stst
196.6\%	820.08	946.66	866.66	670.08	200.08	848.65	486.66	988.68	gso	996.68	${ }^{156.65}$	Lifs
028.68	¢66.	689.66	266.66	096.66	086.66	680.08	\%96.06	\%92	868	\% 20.08	¢78.62	9 9\%
188.6\%	8¢L.66	080.08	¢ 46.68	${ }^{606.65}$	\%¢6.6\%	6.	988.68	698.66	896	810.0	428.6 B	cris
890.08	898.66	984.68	0.0	098.68	966.66	286.63	8 LI	84.	888.66	129	¥90.	¢¢
815.08	168.68	442.66	06 T . 08	266.63	666.66	828.66	288.66	098.	186.	${ }^{972}$	9\%8	${ }^{\text {8\%81 }}$
08 T .08	\% 42.66	\% 20.08	888.68	870.08	866.68	\$ 20.08	996.68	280.08	066.66	090.080	TLO.08	${ }^{\text {\%78 }}$
404.68	9\%8.68	609.66	464.68	It6, 68	688.66	F26.66	+06.6\%	$\underset{\text { ¢06. } 60}{ }$	296.68	028.66	948.68	$1{ }^{\text {¢ }}$
«!	щ!	-п!	'u!	'п!	'u!	¢	'u!		'世!			
:точшәәас	тоquoло ${ }^{\text {N }}$:10q970		7su3nv	$\cdot S_{\text {[us }}$	'ouns	- Su	$\mathrm{TIM}^{\text {MIV }}$			- Kırnuup	arvax

The numbers in the lowest line show the monthly difference of atmospheric pressure from the average in the year 1854. From them we learn that the pressure was in defect in January, May, June, and December; was near its average value in July and November, when it was slightly in excess; it was in excess in all the remaining months.

In February the excess was large, and the reading was greater than in any February in the series, except 1849. In March the excess was very large, and the reading exceeds that of any March in the above series.
In April the excess was large, and the reading was exceeded in one instance only, viz., in April 1844. In August the excess was large, but there are three instances in the Table with readings of nearly the same value, viz., in 1842, 1849, and 1851.

In September the excess was large, and the reading exceeded that of September in the series.
The mean reading for the year 1854 was 30.021 inches, exceeding the average by 0.082 inches.

Temperature of the Air.

The thermometers employed in determining the temperature and humidity of the air were made by Messrs. Negretti and Zambra, and, as before stated, were all carefully compared with standards, and their errors determined.
The mean daily temperature of the air was found from the mean of the observations of the dry-bulb thermometer, corrected for diurnal range;* and a second mean was found from the readings of the maximum and minimum thermometers, also corrected by a quantity given in the same paper. The adopted mean temperature for each day was then determined by combining these two values, and giving them weights proportional to the number of observations from which they respectively derived.
The mean of these was taken weekly; their results are shown in the annexed Table.

* The quantities required to perform these corrections will be found in a paper by myself, published in the "Philosophical Transactions," Part I. 1848.

	\pm		－
	\％		$\stackrel{\square}{4}$
	曷		혁
	会 -		$\stackrel{-3}{4}$
	∞		\％
$\stackrel{1}{2}$	景		\％
			$\stackrel{?}{\text {－}}$
			$\stackrel{\text { ¢ }}{\text { ¢ }}$
			$\stackrel{5}{5}$
	$\left\|\begin{array}{c} \tilde{E} \\ \vdots \\ \vdots \\ 0 \\ 0 \end{array}\right\|$		$\stackrel{8}{3}$
			¢
			$\stackrel{9}{515}$
			\％
			$\stackrel{8}{5}$
			$\stackrel{9}{5}$
			$\stackrel{7}{8}$
			2088
			8
			$\stackrel{\circ}{8}$
			\％
			－
			－
	㫛		Cis
			웅
			－
			$\stackrel{*}{10}$
	曷育密		

The numbers in this Table show the weekly distribution of tem－ perature over the Metropolis．In the last line but one，are given the mean results of all the stations；they show the temperature in each week of the Metropolitan districts．

By comparing the individual results with these values，it will be seen that generally the temperature at the central stations has been somewhat higher，and those at the outlying stations somewhat lower than the mean．

In the last line of this Table are given the mean results of those stations situated both north and south of London，and which I found to agree well with each other．They may be considered as the mean weekly temperature of the Metropolitan districts，free from the effects of the river Thames and all Metropolitan influences． The result of this comparison is shown in the following Table：－
14

				$\stackrel{4}{4}$
				$\stackrel{7}{7}$
				$\stackrel{\square}{+}$
				＋
		＊	－：皆	$\stackrel{3}{4}$
				$\stackrel{+}{+}$
		\pm		－
	${ }_{4}$	F		－
		\square		$\stackrel{3}{4}$
		樊		\square \vdots + +
	兑	－		$\stackrel{\square}{+}$
	\％	$\stackrel{\square}{\square}$	－${ }_{\text {¢ }}^{\text {¢ }}$	$\stackrel{\square}{7}$
				$\stackrel{\infty}{+}$
		$\stackrel{\square}{8}$		$\stackrel{\text { ¢ }}{+}$
				$\stackrel{セ}{+}$
		\bigcirc		$\stackrel{\infty}{\text { ¢ }}$
	蒝			$\stackrel{\substack{\text { ¢ }}}{\substack{++}}$
				$\stackrel{0}{+}$
		$\stackrel{1}{9}$		¢
	易			$\stackrel{+}{\circ}$
		암	｜0：：：	$\stackrel{+}{+}$
		－		$\stackrel{+}{\circ}$
		言		$\stackrel{8}{7}$
		，		$\stackrel{\square}{7}$
	号			$\stackrel{\oplus}{\ddagger}$
				$\stackrel{\text { ¢ }}{+}$
				䛒

diacram representing london weekly meteorolocical phenomena
at the boundary and central stations.

Thim

16
to December 30, deduced from that series, are given in the following Table:-
mbite Meat Daily Temperature of the Aif Table VII.-Avat Greentich.

$\begin{aligned} & \text { Days } \\ & \text { of the } \end{aligned}$	July.	August.	September.	October.	Norember.	December.
	-	\bigcirc	-	\bigcirc	-	\bigcirc
1	61.8	$62^{\circ} 2$	5s.9	53.3	46.3 46.1	41.7 41
2	$62 \cdot 0$	$62 \cdot 2$	$\frac{58}{59} 9$	53.8	$45 \cdot 9$	$41^{\circ} 5$
3	$62^{\circ} 1$	$6{ }^{6 \cdot 1}$	5s.5	${ }_{52}{ }^{52} 6$	$45 \cdot 7$	$41^{\circ} \cdot 4$
4	$62^{\circ} \cdot 2$	$62 \cdot 1$		$52 \cdot 4$	$45^{\circ} 4$	$41^{\circ} \cdot 2$
5	$62^{\circ} 3$	${ }_{62}^{62} \cdot 1$	${ }_{5 S}{ }^{\circ} 0$	$52 \cdot 2$	$45^{\circ} \mathrm{T}$	$41^{\circ} 1$
6	$62^{\circ} \cdot 2$	${ }_{62} 6.0$	${ }_{57}{ }^{5} 9$	$52 \cdot 0$	$44^{\cdot 9}$	41.0
7	$62^{\circ} 1$	$62 \cdot 9$	57.7	$51 \cdot 7$	$44^{\cdot} 7$	40.8
8	${ }_{61}^{62} 9$	$61 \cdot 8$	57.5	$51^{\circ} 5$	44.5 44.2	40.6
9 10	${ }_{61} 6$	61.7	57.4	${ }_{51}^{51 \cdot 0}$	44.0	$40^{\circ} 5$
11	$61 \cdot 8$	$61^{\circ} 7$	${ }^{57} 570$	50.8	$43 \cdot 7$	$40 \cdot 3$
12	$61 \cdot 9$	61.6	${ }_{56}{ }^{\circ} \mathrm{s}$	50.6	$43 \cdot 4$	$40^{\circ} 2$
13	$62^{\circ} 0$	${ }_{61} 61$	56.7	$50 \cdot 4$	$43 \cdot 2$	$40^{\circ} 0$
14	${ }_{69}^{62.1}$	$61 \cdot 2$	$56^{\circ} 5$	50.2	$42^{\circ} 9$	39.8 39.6
16	$62 \cdot 1$	$61 \cdot 1$	56.3	50.0 49	$42 \cdot 5$	39 39
17	$6{ }^{6} 1$	61.0 60.8	56.1 55.9	49.5	$42 \cdot 4$	39.2
18	$62^{\circ} 0$	60.8	55.7	$49 \cdot 2$	$42 \cdot 2$	$39^{\cdot 1}$
19	$61 \cdot 9$ 61.9	60.7 60.6	55.5	$49^{\circ} 0$	$42^{\circ} 0$	38.9
20	$61 \cdot 9$ $61 \cdot 8$	$60 \cdot 4$	55.4	$48^{\circ} 8$	41.9	$3{ }^{38^{\circ} 7}$
$\underline{21}$	$61 \cdot 8$	$60 \cdot 3$	55.2	$48^{\circ} 7$	41.8	$38^{\circ} 5$ 38.4
23	$61 \cdot 8$	$60^{\circ} \cdot 2$	55.0 54.8	48° 4	$41 \cdot 6$	38.4 38.2
24	61.9	60.0 59	54.8 54.7	47.9	$41 \cdot 7$	38.0
25	$61 \cdot 9$	59.9 59	54	$47 \cdot 7$	$41 \cdot 8$	${ }^{37} \cdot 8$
$\stackrel{26}{ }$	62.0 60.1	$58 \cdot 8$ 59	54.2	$47 \cdot 5$	$41 \cdot 9$	$37 \cdot 6$
$\stackrel{27}{28}$	$62 \cdot 1$ $62 \cdot 2$	59.5	54.0	$47^{\circ} 2$	$41 \cdot 9$	37.4
28 29	$62 \cdot 2$ $62 \cdot 2$	$59 \cdot 3$	52.7	$46^{\circ} 9$	$41 \cdot 9$	$37 \cdot 2$ $37 \cdot 0$
30	$62^{\circ} 2$	$59^{5} \cdot \underline{ }$	53.5	${ }_{46}{ }^{\circ} 5$	41.8	37° 36
31	$6{ }^{\circ} \mathrm{C}$	$59^{\circ} 0$				

As before stated, the mean temperature of every day was determined for every station, and compared with the normal temperature for the same day, found from the numbers in the preceding Table, by the application of a correction for difference of elevation ais the rate of 1° for a difference of elevation of 290 fect, an every day way the departure of the temperature from the results of the weekly means of for every station was found. in the following Table:-

17

The numbers in this Table show the weekly departure from the normal temperature of the week at all stations. In analysing them, the first fact worthy of note is that, for the most part, all stations in the same week have been in excess, or all in defect; the next remarkable fact is, that these departures from the averages are not equal in amount. The greatest difference in these respects took place within the first three weeks in September. For instance, the excess of temperature in the first week at St. Thomas's Hospital was $5 \cdot 2^{\circ}$; at Chiswell Street and Brixton it was $8 \frac{3}{4}^{\circ}$; the next week the mean temperature at Bexley Heath was that of its average, whilst other stations were in excess from 2° to 5°. In the following week the mean were temperature at Enfield was $1 \frac{1}{2}$ oleow its average, whist
stations it varied to nearly 6° above; at Brixton it seemed to be as stations it varied to nearly 6° abore; at Brixton it seemed to be as
large as 8°, but the instruments at this station had been placed too near the surface of the soil, and some suspicion reigns over the results up to this time. They were subsequently removed to a better position. Similar differences are shown week by week, showing the operation of local causes to affect the temperature of particular districts.

The mean results for the different stations for the thirteen weeks ending November 25, are as follows.-

	Sydenham	-	wa		
	Lewisham	-			$0 \cdot 5$ in excess
	Royal Observatory		- "		$0 \cdot 1$ in excess
	Bexley Heath	-	- "		$0 \cdot$
	Brixton		- "		$2 \cdot 6$ in excess
	Camberwell	-	- "		$0 \cdot 4$ in exce
	Battersca	-			$1 \cdot 0$
	Dreadnought Hosp	al Ship	- "		$2 \cdot 2$ in excess
	Milbank	-	- "		0
	Brompton	-			$1 \cdot 0$ in defect
	Board of Health	-			$0 \cdot 0$
	St. Thomas's Hospi				$0 \cdot 5$ in excess
	Poplar	-			$0 \cdot 1$ in defect
	Guildhall	-			$0 \cdot 3$ in defec
	Somerset House	-			$0 \cdot 8$
	St. Giles's -	-	- "		0.5 in exces
	Chiswell Street	-			$4 \cdot 0$ in exce
	St. Mary's Hospital	-			1.6 in exce
	Bethnal Green	-			$0 \cdot 1$ in defect
	", St. Pancras -	-			$0 \cdot 7$ in defec
	Highgate	-			1.5 in exc
	Enfield	-			$1 \cdot 7$ in defe

The numbers in the lowest line of Table VIII. show the mean departure of the temperature of the Metropolitan districts in each week from its average. From them we learn that the temperature was in defect, with the exception of the two weeks ending July 22 and 29, till August 19; then in excess till October 14; in defect in the two following weeks; in excess in the week ending November; in defect till. December 2, and afterwards in excess. The most continuous excesses were, therefore, in the seven weeks ending October 14, and the largest excess of temperature took place in the weok ending September 2.

It remains now to compare the monthly temperature, as observed throughout the year, with the mean monthly temperature at one of the stations, as deduced from the mean of several yenrs. For this purpose I have used the series of observations taken at the Royal Observatory, Greenwich. The results are contained in the following Table:-

：	20					
\square		㝘		－	$\stackrel{\square}{4}$	\circ + +
\％		哀		－	$\stackrel{\square}{2}$	∞ \cdots i
I		㵄		$\stackrel{\text { ¢ }}{\text { ¢ }}$	－	0 0 0
1			－${ }_{\text {－}}^{\text {¢ }}$	－	$\stackrel{\rightharpoonup}{\hat{\circ}}$	$\stackrel{\square}{+}$ +
16				$\stackrel{\rightharpoonup}{6}$	$\stackrel{\circ}{\circ}$	$\stackrel{\imath}{\circ}$
		$\stackrel{ \pm}{5}$		$\stackrel{\oplus}{\square}$	$\stackrel{\circ}{\circ}$	$\stackrel{ே}{1}$
		㗊		$\stackrel{\circ}{\dot{\circ}}$	$\stackrel{\sim}{3}$	－
		㝘	 	$\begin{aligned} & \ddot{x} \\ & \dot{i} \\ & i \end{aligned}$	－	20 6 1
		安	－	$\stackrel{2}{4}$	$\underset{\sim}{+}$	$\stackrel{+}{-}$
罟		言		$\stackrel{\infty}{\stackrel{\rightharpoonup}{\tau}}$	$\stackrel{\infty}{\dot{\sim}}$	\circ + + +
		砉		$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\sim}{\circ}$	¢ + + +
		䓊		¢	－	－ + +
		妾		＇	＇	

The lowest line but two gives the mean monthly temperature from 13 years ending 1853．The lowest line but one gives the mean monthly temperature of 1854 ；and the lowest line of all gives the monthly de－ parture of temperature in 1854 from the mean of the preceding 13 years． From these it appears that the temperature was in excess till April， and in September and December，and in defect in all the remaining－ months．The summer was cold．The mean yearly temperature for the 13 years ending 1853 ，was $49 \cdot 4^{\circ}$ ，and of 1854 was $49 \cdot 0^{\circ}$ ．The in－ vestigation of the mean temperature of the several Metropolitan districts，exhibit up to this point very little variation of temperature， as compared each with the other，and we may fairly come to the con－ clusion that the actual temperature of the air has exercised no very decided influence over the disease，which has been so partial in its operation，devastating entire districts and passing nearly harmlessly by others，which，according to the above results，have shared the same temperature；considering，however，that the amount of daily range of temperature exercises a more active influence on the health of the people than the mean temperature of the air，I have regarded thi part of the investigation as highly important to the present inquiry．

The diurnal range of temperature is given by the results derived from self－registering maximum and minimum thermometers．The maximum thermometer employed is that patented by Negretti and Zambra；in this instrument there is no index of steel，which is there－ fore free from the entanglement and frequent derangements to which the ordinary maximum thermometers are liable．In the series of observations no blanks occur as arising from failure of action， although in several cases it was placed in the hands of gentlemen previously unaccustomed to the use of such instruments．Confidence may be placed in the results，which are given in the following Table：－

In glancing at the numbers in this Table we creeive that for the most part the temperature at the central stations, has not risen so high during the day as at the outlying stations. The results from Camberwell in this instance, and in all others, show that this station is beyond the influence of the thick atmosphere of London, and that it has enjoyed its full share of high day temperature.
In the last two lines of the Table are given the mean results for all stations, and those derived from the suburban stations only. By comparing the results at the several stations with the numbers in the lower line, it is easy to determine the amount of deficiency of maximum day temperature at the central stations. The results of thi comparison are shown in the following Table:-

24

From the preponderance of - over + signs, contained in this Table, it appears that the high day temperature of London has generally been below that of the surrounding districts; nor is this remarkable, the sun's rays having first to penetrate the thick atmosphere which generally overhangs all large towns and cities, but more phere whicularly London, and for this reason the duration of high day particularly London, and for this reasou the duration of high day temperature is shorter than in the country": The deficiency, as shown in the foregoing Table, is somewhat less than might have been expected, considering the amount of watery vapour and miscellaneous exhalations which require to be dispersed by the sun light and heat of the day, particularly following cloudy and calm nights, when the atmosphere would necessarily be surcharged with vapour.

The next Table contains the results derived from the minimum hermometers.

* During the months of September and October J. Campbell, Esq., of the Board of *ealth, kindly furnished me with pieces of black ribbon which he had placed daily in the focus of a spherical lens, at :he Bowd of Health, and which, whenever the sun shone, was marked by a burnt line, or on parr i.lly clear days by a series of holes. The duration and time of sunshine was thus show by this ingenious contrivance of similar apparatus been simultaneously in action in the suburban districts.

			－	\％
			$\stackrel{\text { ¢ }}{\substack{\circ}}$	\％
			易	$\stackrel{8}{8}$
			$\stackrel{\square}{5}$	$\stackrel{\square}{5}$
			凩	\％
			\％	皆
			这	\％
		－	㐌	\％
			－	\％
			\％	\％
			－	－
		－ 0 －	$\stackrel{\infty}{8}$	\％
		－	范	$\stackrel{?}{8}$
	－ 5		－	\％
			$\stackrel{\text { F }}{ }$	\％
		－	$\stackrel{\square}{\square}$	管
			楽	\％
			踼	家
	$\left.\begin{array}{\|c} y_{0} \\ 0 \\ 0 \end{array} \right\rvert\,$		冎	$\stackrel{\square}{\square}$
			号	\％
			吅	翟
		，	$\stackrel{\circ}{\square}$	\％
			$\stackrel{\circ}{\text { in }}$	令
			－	－
	宫		－	？
			号	号

An inspection of the numbers in this Table shows that at the central stations the night temperatures have heen much higher than at the boundary stations．The numbers in the lower line but one， show the mean lowest temperatures of night over the Metropolitan districts，and those in the lowest line of all，the mean night tem－ perature of the stations beyond the influence of London．By com－ perature of the stations beyond the central stations with those in the lowest paring the numbers at the central stature of London at the various line，the excess of the The results of this comparison are shown in the next Table．
TAbLe Xifi.-Sifowina the Excess of London Low Nigitr Tmprimature.

From the numbers in this Table it will be seen that London night temperature has been high in every week, that it exceeded that of the suburban districts in September, by quantities ranging from 3° the sububan istricts is in each week is shown in the lower line. The mean for the 26 weeks ending December 30, is 3°, showing the average excess of minimum night temperature in London over that of the country.
I have thus determined by actual observation and comparison the excess of night temperature of London over the country and surrounding districts. An equally full determination of the diurnal range of temperature is required. The amount of range was determined daily, and the mean of each week was taken and checked by mined daily, andere difference between the numbers in Table X. and in Table XII. The results are contained in the following Table:-

30

The results contained in this Table possess great interest in connexion with the climate of London; we learn from them, that in every week the range of temperature within twenty-four hours, has been from 2° to 10° less than the range in the country. Till September 2, the stations are all outlying, but in this week the results from Chiswell Street are included, and exhibit a range the half only of the other stations; in the weeks from September 9, the results are from a greater number of stations, and the same general fact of much smaller range at the central stations are shown week by week. To determine its amount, the difference between the individual numbers and those in the last line of the Table are shown as follows:-

The prevalence of - over + signs in this Table establishes the fact of less daily range of temperature in London than in the country, and the numbers show that this deficiency is at times very great. The largest numbers appear in the several weeks in September. The numbers in the lower line show the mean less daily range of temnumbers in each week in London. The mean for the twenty-six ending December 30, is $3 \cdot 1^{\circ}$.

It would be interesting to compare daily the minima readings and daily ranges of temperature at the river side and central stations with those at the boundary stations; but to exhibit such here in detail, would occupy more space than can be devoted to the investigation.

In a special inquiry, however, of this nature, it is necessary to enter somewhat more fully into results which exhibit large local irregularities, in preference to those in which small differences alone are found to exist.
In looking over Tables X. and XII., it will be seen that the results from St. Thomas's Hospital are in close agreement with those at the central stations, and this station has the advantage of continuous results. Confining ourselves, therefore, to this as the representative of the central stations, and of Lewisham as the representative of the boundary stations, we have the results shown on the following Table :-

c 2

The numbers in the second and third columns of this Table give the lowest temperatures of the air every day at Lewisham and at St. Thomas's Hospital, and the numbers in the fourth column exhibit the difference between the numbers in the two preceding columns, affixing the sign + when the temperature at St. Thomas's Hospital was the higher of the two. An inspection of the numbers in the third columm will show that the night temperature of London has been almost alwars above that of the country. At times these excesses have amounted to $7^{\circ}, 8^{\circ}, 9^{\circ}$, and 10°. These large differences have occurred when the sky has been cloudless, with a hazy or misty atmosphere, with little or no wind, and when objects at the outlying stations have been seen at considerable distances, whilst near objects at the central stations have been obscure and ill-defined, clearly showing the effect of the city on the overhanging atmosphere, dimming its transparency, and creating around itself an atmospers of thansparency, armth and impurity. At times these sphere of comparative small, and have mostly taken place when the
differences have been smater sky has been overcast and rain falling.

The periods when the greatest excesses of night temperature occurred, were from August 26 to September 14, and from Sepmber 26 to October 4. These periods were both distinguished by stagnant atmosphere. with prevalence of haze and frequent fog The mean excess in the former period was 7°, and in the latter was 6.7°.
The numbers in the fifth and sixth columns give the daily range of temperature at Lewisham and St. Thomas's Hospital. The numbers in the last column exhibit the difference of daily range on every day the two places, the sign - being affixed to those numbers when he range in London has been less than in the country. An inspecion of the numbers in the last column will show that, with very few exceptions, the sign - is affixed, showing that the range of daily emperature in London has been almost alwars smaller than that of the country. At times the daily range has been the half only of that in the country, and at times the difference has amounted to 15 and 20°, at such times the air has been calm, with a thick atmoshere ; fog, mist, or haze has been prevalent.
The most continuous large defects of daily range took place from August 26 to September 11, and from September 26 to October 4. In the former period the diurnal range of temperature at Lewisham was 32.5°, and at St. Thomas's Hospital was 17.5°; and in the latte period was at Lewisham $31 \cdot 2^{\circ}$, and at St. Thomas's Hospital $14 \cdot 9^{\circ}$.
In these particulars London climate differs greatly from that of the country. The condition of a low day temperature, of a high night temperature, and of a small range of daily temperature, are those favourable to the prevention and cure of pulmonary complaints. London climate would, therefore, seem to include these conditions; but then, on the other hand, it is necessary they should be accompanied by a pure atmosphere.
It remains now only to compare the monthly diurnal range in 1854 with its normal amoun at one station. The following Table contains the results of the obserrations at Greenwich since the year 1841.

40

	遃		$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{-}$	\circ + + + +
	㤟		$\stackrel{\text { ¢ }}{ }$	$\stackrel{\text {－}}{\text {－}}$	\circ + + +
	哀		－	$\stackrel{\circ}{\square}$	¢ + +
	硅		$\begin{gathered} i \\ i \end{gathered}$	$\stackrel{\stackrel{\rightharpoonup}{i}}{\stackrel{y}{i}}$	+ i + +
	䒼		$\underset{\sim}{\dot{j}}$	$\stackrel{+}{\dot{\theta}}$	$\stackrel{\hat{\mathrm{a}}}{ }$
	容		$\begin{aligned} & 20 \\ & i \\ & i \end{aligned}$	$\stackrel{\ddot{i}}{\square}$	$\begin{aligned} & \dot{+} \\ & + \end{aligned}$
	¢	－呙离音	$\stackrel{\infty}{\stackrel{\infty}{\oplus}}$	$\stackrel{9}{\stackrel{\circ}{\leftrightarrows}}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & 1 \end{aligned}$
	橒		$\overrightarrow{\dot{\theta}}$	$\stackrel{\infty}{\dot{\sigma}}$	$\stackrel{\stackrel{1}{\circ}}{\stackrel{1}{\circ}}+$
	安	－京	$\stackrel{\ddot{\theta}}{\stackrel{\rightharpoonup}{0}}$	$\stackrel{\hat{\oplus}}{\dot{\oplus}}$	∞ $\stackrel{+}{\circ}$ + +
	苞		$\stackrel{\circ}{\ddagger}$	$\stackrel{9}{9}$	\circ \vdots +
	耍	$\bigcirc \vec{\circ}+\overrightarrow{\dot{O}} \times \underline{\sim}$	$\stackrel{0}{\circ}$	－	- + +
	荘 品		$\stackrel{9}{\infty}$	$\stackrel{\text { ¢ }}{\stackrel{\circ}{\circ}}$	\circ + + +
	息			莒	宕

The numbers in the lowest line but two give the mean monthly diurnal range for the preceding 13 years；the lowest line but one gives the observed daily range in 1854；and the lower line of all gives the abnormal values for 1854 ．These are all，with one excep－ tion，affected with the + sign，the month of June forming the exception．The whole year seems to be remarkable in this respect． The months whose daily ranges have been the greatest are March and April，and September the greatest of all．The mean yearly daily range for the 13 years ending 1853 was $14 \cdot 6^{\circ}$ ，and for the year 1854 was $18 \cdot 1^{\circ}$ ，being 3.5° above the average．

Temperature of the Thames Water．
Thus far I have proceeded in strict conformity with the rules applying to meteorological investigation；but as，during the progress of my work，I have found it intimately linked with a number of influences in operation to produce the abnormal condition which each Table exhibits，to a more or less extent，as existing in London and its suburbs，I have felt myself bound to ascertain as much as possible the nature of these influences，and to connect them all in my power with the main object of my report．I hope，therefore， that so doing I may not be considered to transgress the precise limits of my own share of this most important and onerous investigation．

As air is the receptacle for all vapours and impurities arising from evaporation and exhalation，it is necessary，before proceeding farther in this inquiry，to investigate the temperature of the Thames water， which presents a large evaporating surface，giving off vapour day and night in immense quantities．

As the river will be found to exercise an important，and，unfor－ tunately，a most baneful influence upon London meteorology，I propose in the following discussion to avail myself of a series of observations which have been made by Captain Sanders，R．N．since the year 1846．＊

His instruments consist of a maximum thermometer，as patented by Negretti and Zambra，and a minimum thermometer of Rather－ ford＇s construction．These instruments are placed in a perforated trunk，fixed to the side of the＂Dreadnought＂Hospital ship，lying off Greenwich，at the depth of two feet below the surface of the water．The diurnal range of the temperature of the water is small， and its temperature is well determined by one set of observations daily．The resuits from 9 years are contained in the following Table ：－

In the last two lines of this Table are given the mean results for each month, and the excess of the temperature of the water above that of the air, in the same period of nine years. We learn from them that the temperature of the water has been higher than that of the air in the temponth except January. The excess is 0.5° in February, increasing to 4.3° in June, decreasing to 3.1° in July, continuing about this value till September; is $1 \cdot 4^{\circ}$ in October, and less than 0.5° in the remaining two months.

The mean excess in the months from April to September is 3.3 , and 0.6° in the remaining month.

The normal temperature of the water of the Thames for the entire year from these results is 51.7°. By taking the difference between this result and the monthly means, the law of annual variation of Thames water temperature is found to be as follows:-
January, -12.8°; February, -10.8°; March, -8.6°; April, $-2 \cdot 7^{\circ}$; May, $+4 \cdot 9^{\circ}$; June, $+11 \cdot 5^{\circ}$; July, $+14 \cdot 0^{\circ}$; August, $+12 \cdot 6^{\circ}$; September, $+7 \cdot 9^{\circ}$; October, $+0 \cdot 4^{\circ}$; November, -0.7°; December, -112°.
The observations of 1854 may be discussed as follows:-
The mean temperature of the water of the Thames for the year 1854 was 52.0°, exceeding the average by 0.3°. By taking the difference between the mean for the entire year, and that of each month, the variation for the year 1854 is found as follows:-
January, -13.8°; February, $-10 \cdot 4^{\circ}$; March, -6.5°; April, $+0 \cdot 2^{\circ}$; May, $+2 \cdot 9^{\circ}$; June, $+7 \cdot 1^{\circ}$; July, $+12 \cdot 1^{\circ}$; August, $+0 \cdot 2^{\circ}$; May, $+2 \cdot 9^{\circ} ; 10 \cdot 9^{\circ}$; October, $+2 \cdot 9^{\circ}$; November, -6.5°; and December, $-10 \cdot 3^{\circ}$.

By comparing these numbers with the law of diurnal variation, we shall see that they depart from that law, particularly in March, April, June, September, and October.

The excess of the iemperature of the Thames water in the year 1854, above that of the superincumbent air, was as follows:-
January, -0.8°; February, $+2 \cdot 1^{\circ}$; March, $+1 \cdot 7^{\circ}$; April, $+3 \cdot 8^{\circ}$; May, $+4 \cdot 0^{\circ}$; June, $+3 \cdot 4^{\circ}$; July, $+3 \cdot 8^{\circ}$; August, $+3 \cdot 2^{\circ}$; September, $+4.8^{\circ}$; October, $+4.6^{\circ}$; November, $+5.0^{\circ}$; and December, $+0.4^{\circ}$.

By the comparison of these numbers with those in the lower line of the preceding Table, it will be seen that the relation between the temperatures of the water and air in 1854 has not been the same as the averages. The excesses were a little smaller in June, July, and August; they were larger in February, March, and April, and very August; they were larger in much larger in the months of September, October, air in these The heating effect, therefore, of the ween much greater than usual.
months in the year 1854 must have been Thames being in excess of
the temperature of the air, accounts in a great measure for the high night temperature of Loncion already noticed. In the same manner the thick atmosphere of the Metropolis by day, opposes a screen to the full influence of light and heat, it is equally obvious that the air at night must have it raised by contact with the water, which the
foregoing Tables have shown to be at a higher temperature．Of the baneful effects of the Thames water and its adjacent marshes upon the climate and health of London I will endeavour to convey an idea as I proceed，with as much minuteness as may be consistent with a report devoted to other subjects of inquiry，and I shall be able to show distinctly that the impurities with which the river is at present charged，through an imperfect and much to be regretted sanatory arrangement，have chiefly to answer for the atmosphere of death and disease with which certain districts of the metropolis are invested， and which can only be removed by the cessation of the obnoxious influences．
It is much to be regretted that these should be suffered to arise from the very source of the prosperity and commercial greatness of a city，which it has contributed to render the greatest in the world； whose waters，if suffered to flow undefiled with the sewerage of a vast city，instead of acting as a laboratory for the general diffusion of noxious vapours，would，in their course exercise a healthful and purifying influence．
I will now proceed to discuss the mean daily temperature of the Thames water from July to the end of the year，as shown in the following Table．
Table Xix．－Mean Daily Temperature of the Watbr of the Thames．

$\left\lvert\, \begin{gathered} \text { 1854. } \\ \text { Month } \\ \text { and } \\ \text { Day. } \end{gathered}\right.$	㝘号	$\begin{array}{\|l} \text { Month } \\ \text { and } \\ \text { Day. } \end{array}$		$\begin{gathered} \text { 1854. } \\ \text { Month } \\ \text { and } \\ \text { Day. } \end{gathered}$	䓂	$\begin{array}{\|c} \text { Montll } \\ \text { and } \\ \text { and } \end{array}$	言	$\begin{array}{\|c\|c} 185 \% \\ \text { Honth } \\ \text { and } \\ \text { Day. } \end{array}$	言	$\begin{array}{\|c} 1854 . \\ \text { Month } \\ \text { yond } \\ \text { and } \\ \text { Day. } \end{array}$		$\begin{gathered} 1854, \\ \text { Mlont } \\ \text { and } \\ \text { pay. } \\ \text { Day. } \end{gathered}$	
	\bigcirc								\bigcirc		\bigcirc		\bigcirc
	57．8	July 1	$62 \cdot 9$ 60.6	Aug． 1	67．3	Sept． 1	${ }_{64}^{63} \cdot 8$	Oct． 1	59\％	Nor． 1	49：3	Dec． 1	41.5
	${ }_{57}^{58}$	$\frac{3}{3}$	${ }^{63}{ }^{4} 4$	$\stackrel{2}{8}$	${ }_{65} 66.7$	$\frac{2}{3}$	${ }_{66} 63.3$	$\stackrel{3}{3}$	38：0		${ }^{49} 9 \cdot \frac{7}{5}$		${ }_{41}^{4} \cdot$
	57．6	4	63.6		65．4．	4	6j． 1		as ${ }^{2}$	4	$49 \because 2$	4	41.4
	＋${ }_{56}^{57 \cdot 2}$	5	63.2 63.7		${ }^{63.5}$	5	65．3	5	57\％${ }^{5}$		49：4	5	${ }^{41} 1.6$
	－	${ }^{6}$	${ }_{63} 6.7$	7	${ }^{62} \cdot 5$		64．8	6	57．6		（48：\％	7	41.7 41.6
	55.8		62.4	8	$62 \cdot 7$		65.3		$57 \cdot 1$		47.9	8	41.5
	530．8	9		10	${ }_{63}^{62 \cdot 9}$	10	析．0	I0	57．4	9		9	${ }_{41}^{41} \cdot 6$
	$56 \cdot 5$	11	62•7	11	63.7	11	63．4	11	${ }_{56} 8$	11	${ }_{46}{ }^{46}$	11	${ }_{41}{ }^{41}$
	$57 \cdot 2$	12	62．3：	12	63.8	12	$63 \cdot 4$	12	$56^{\circ} 6$	12	${ }_{46} \cdot 3$	12	${ }_{41} \cdot 1$
	57.3	13	$62 \cdot 6$	13	67：3	13	63.5	13	$56 \cdot 2$	13	$46 \cdot 1$	13	41.7
	57．5	$1 \pm$	$6{ }^{6} \cdot 6$	14	$65^{\circ} 0$	14	${ }^{13} \cdot 6$	14	55.7	14	$45 \cdot 9$	$1 \pm$	41.2
	57.8	15	${ }^{62} \cdot 6$	15	64．8	15	${ }^{63 \cdot 6}$	15	55：3	15	45.7	15	42.3
	55．0	16	${ }^{62} 5$	17	64．3	16 17	${ }_{63}^{63.6}$	116		16 17		16 17	${ }_{42}^{42} 8$
	${ }_{59}{ }^{51}$	17	64．0	18	${ }_{63 \cdot 6}^{671}$	18	${ }_{63}{ }_{6}^{6}$	18	${ }_{53} 5$	18	44－8	18	${ }_{41}^{42} \cdot 1$
		19	64.0	19	61	19	64．0	19	55^{5}	19	4t－s．	19	41.0
		${ }_{21}^{20}$	64．5	${ }_{21}^{20}$	${ }_{64}^{64 \cdot 2}$	${ }_{21}^{20}$	${ }_{64}^{64.1}$	${ }_{21}^{20}$	55．3	20	43.2	${ }_{21}^{20}$	41.5
	${ }_{60}{ }^{\circ} 4$	2.2	${ }_{65 \cdot 6}^{6 \cdot 6}$	22	${ }_{61}{ }^{+}{ }^{4}$	2.2	${ }_{63} 6.0$	22	${ }_{51} 5$	2.2	${ }_{43}{ }^{4} \cdot 5$	21	41.4
	$61 \cdot 7$	23	67.6	23	64.0	23	62.0	23	51.3	23	${ }_{43} \cdot 1$	23	41.7
	${ }_{63}^{61}{ }^{61}$	24		$\stackrel{24}{25}$	${ }_{63}^{63 \cdot 3}$	${ }_{25}^{24}$	61．2	$\stackrel{24}{25}$	51.9	${ }_{25}^{24}$	${ }_{42}{ }^{42} \cdot 5$	$\stackrel{24}{24}$	行 4.3
	$63^{3} .4$	26	69.2	26	${ }_{69} 9.3$	26	59．2	20	${ }_{50} 5$	26		26	4295
	${ }_{63}^{63}$	87	63．5 6	${ }_{28}^{27}$	63．0	${ }_{28}^{27}$	53．9	27	50．0	27	${ }^{41} \cdot 7$	27	${ }_{42}^{42.4}$
	${ }_{63.0}$	29	$67 \cdot 6$	9	$64 \cdot 2$	29		29	49：5	29		29	${ }_{42} \cdot 1$
	62． 9	30	67.5	30	${ }^{6.7} 9$	30	59.6	30	49：3	30	${ }_{4}{ }^{\circ} 5$	30	41.8
			$6{ }^{6}$					31	49.0			31	42.

From this Table we learn that the temperature of the Thames water attained to 60° on June 22 ，and to 62° and 63° by June 27 ；it remained nearly stationary at this temperature till after the middle of July，and then increased till it attained the highest in the year， viz． 70° nearly，on the 25 th and 26 th of July；after this time it
decreased to 62° by the 8th and 9 th of August，and varied but little till towards the end of the month，when a singular increase took place，and a second maximum， September；it then declined gradualy， 50° by October 27 ，and to 42° 60° by the 25 th of September，then to 50° by October 2, and to 42° by November 26．After this time to the end of the year there was scarcely any variation of temperature．
The daily range of temperature of the Thames water is about 2° ； by decreasing the numbers in the preceding Table by 1° ，we shall have the lowest night temperature of the Thames water；and by com－ paring these numbers with the lowest night temperatures atLewisham in Table XVI．，the difference is determined between the temperature of the water at night and the air in its vicinity just beyond its in－ fluence．The results of this calculation are shown in the next Table．
Table XX．－Showing the Excess of the Night Temperature of the Water of the Thames above the Minmuar Temperature of the Atr．

$\begin{gathered} \text { Day } \\ \text { of } \\ \text { Month. } \end{gathered}$	July．	August．	September．	October．	November．	December．
	＋${ }^{\circ}$	$\begin{array}{r}\circ \\ +8.2 \\ \hline\end{array}$	\circ $+19 \cdot 6$	＋ 17.8	$+\stackrel{\circ}{11} \cdot 9$	$+\stackrel{0}{1.8}$
1	+10.4 +11.6	+8.2 +16.6	＋17．9	＋18．5	+7.4 $+\quad .9$	+6.1 +6.2
3	+7.9	＋10．2	＋2200	$+12 \cdot 1$ +18.6	+9.2 +12.6	+6.1 +1.3
4	＋6．6	＋15．1	$+19 \cdot 0$ +19.4	+18.6 +7.3	+9.6 +7.9	－ 0.9
5	＋12．4	$+11 \cdot 0$ +10.5	+19.4 +20.2	+4.7 +4.	＋11．5	＋ 6.4
6	+11.4 +16.8	+10.5 $+\quad 70$	+20.2 +19.7	+9.7	＋16．2	＋ 5.8
7	+16.8 $+\quad 9.5$	+12.5 +12.5	＋16．0	＋ 8.6	＋11．7	＋12．0
9	+16.9 +13	＋ 10.5	$\div 14.2$	＋ 4.3	＋11．6	+5.3 +10.9
10	＋12．5	＋7．5	+21.9 +29.3	$+\quad 79$ +3.7	$+18 \cdot 3$ +12.5	$+10 \cdot 3$ $+15 \cdot 6$
11	＋11．2	$+10 \cdot 9$ +5.5	+29.3 +24.5	+7.7 +19.1	+9.8 $+\quad$	＋12．5
12	$+10 \cdot 9$ +129	+11.8 +1	＋ 9.7	＋22．5	$+16.2$	＋6．0
14	＋11．6	＋7．3	＋ 8.6	$\div 17.1$	19.9 +12.9	-5.4 -5.2
15	＋7＊3	＋19．6	$+9 \cdot 3$ +9.5	＋ + +10.1	$+12 \cdot 8$ +7.5	－ 3.2 +9.8
16	$+10 \cdot 5$	+15.3 +18.1	+9.5 +9.7	$+10 \cdot 1$ +19.7	＋10．5	$+10 \cdot 1$
17	＋ 7.5 $+\quad 9.9$	$+18 \cdot 1$ $+19 \cdot 4$	+9.7 +12.0	＋ +8.3	＋ $5 \cdot 5$	＋7．5
18	$+9 \cdot 9$ $+12 \cdot 1$	$+19 \cdot 4$ +14.9	+9.0 +4.5	＋15．0	＋ 9.3	＋ 8.2
－	＋11．5	$+17 \cdot 2$	＋13．1	＋10．7	＋ 7.5	＋6．4
21	$+15.8$	＋9．4	＋17．2	+7.7 +3.4	$+7 \cdot 6$ $+10 \cdot 3$	+12.4 $-\quad 0.6$
$\stackrel{29}{23}$	$+12 \cdot 7$	$+13 \cdot 4$ $+16 \cdot 0$	+21.4 +12.3	+7.4 +13.3	＋117	＋ 3.7
23 24	$+15 \cdot 6$ $+13 \cdot 4$	+8.0 $+\quad 8.3$	＋6．2	＋14．9	＋14．3	＋ 6.3 +1.3
25	＋ 9.7	＋11．2	＋16．9	＋9．9	$+10 \cdot 1$	+1.3 +4.3
26	$+10 \cdot 0$ +11.6	118.3 $+\quad 9.0$	+18.6 +17.9	$+14 \cdot 5$ +19.3	+11.0 +14.2	+7.3 +7.4
$\stackrel{27}{28}$	+11.6 +14.3	$+9 \cdot 0$ +1.6	+17.9 +16.9	+15.5	＋14．0	$+10 \cdot 6$
28 29	+11.3 +23.2	＋12．2	$+21 \cdot 3$	＋14．0	1.6 $+\quad 6.7$	18.5 +1.6
30 31	＋10．9	$+13 \cdot 9$ $+\quad 9.5$	＋18．8	+9.9 $+\quad 20$	$+6.7$	+76 $+\quad 7.0$
31	$+8.2$					

It will be observed that the numbers in this Table are frequently very large，so large indeed that we may infer the water to have been simmering and giving off volumes of vapour，thus，furnishing an explanation of the fact of less daily range of temperature in London
and the frequent prevalence of fog and mist, which, in connexion with the marshes, are very sufficiently accounted for over the city and its environs.

It appears that the most continuously large excesses took place between August 15 and September 12, when during this period of 28 consecutive nights, the average excess was $16 \cdot 3^{\circ}$; and again, within the period beginning September 20 and ending October 4, the mean excess was 16.5°.

Within these periods the whole area of the Thames must have been giving off incessant and vast volumes of vapour, which, unsustained by air, because of the great difference of temperature, hovered over the city, thickening the atmosphere and exercising an influence most inimical to the health of the Metropolis.

Humidity of the Air.
The following Tables give the results of the dry and wet-bulb thermometers; the observations with these instruments were exclusively made during the day. Table XXI. contains the weekly means of the temperatures of evaporation at the several stations; Table XXII. those of the dew point; and Table XXIII. contains the tension of vapour. These several results were calculated from my hygrometrical Tables.

50

Tine iower line of each of these Tables gives the mean value in each week for the Metropolitan districts, and by comparing them with the numbers in the bodies of the Tables the differences will be found to be small and to follow no order, thus showing that the water mixed with the air during the hours of the day has been equally diffused with the air during the hous The nextTable contains the mean monthly throughout every district. their mean values.
Table XXIV.-Showing the Monthly Difference of the Temperatures of and 1854

Months.	Temperature of Evaporation.			Temperature of Dew Point.			Tension of Vapour.		
	Average	$\begin{gathered} \text { In the } \\ \text { year } \\ \text { isfis } \end{gathered}$	Excess	Average	$\begin{gathered} \text { Yn the } \\ \text { year } \\ \text { i } 85 \pm . \end{gathered}$	Excess in 1854.	Average	$\begin{gathered} \text { In the } \\ \text { y cher } \\ \text { is } \\ \text { isis. } \end{gathered}$	$\begin{array}{\|l} \text { Excessin } \\ \text { the year } \\ 1854 . \end{array}$
	。	-			-		in.	in.	in.
January	37×3	$35^{\circ} 0$	$+0.7$	$35 \cdot 2$	36.1	+0.9	$0 \cdot 221$	$0 \cdot 234$	+0.010
	$37 \cdot 3$	37.5	+0.2	34.8	33.6	$-1 \cdot 2$	$0 \cdot 223$	0.218	-0.005
ruar		40.9	-0.2	33.7	37-4	$\div 1.7$	0.229	$0 \cdot 236$	+0.007
March	41.1	40			${ }^{41} 1$	+0.8	0.268	0.274	$+0.006$
April	$43 \cdot 6$	45.0	+1.	40		-0.2	0.329	0.327	-0.002
May	$49 \cdot 6$	48.6	-1.0	46.1	45.9	-0.			
June	51.3	52.7	-1.6	$51 \cdot 2$	50.0	-1.2	0.359		-0.018
July	57.4	$56 \cdot 2$	$1 \cdot 2$	54.3	53.6	-0.7	0.438	$0 \cdot$	-0.025
		56.5	-0.9	54.	$53 \cdot 3$	$-1 \cdot 2$	$0 \cdot 437$	$0 \cdot 416$	-0.021
August		56		$51 \cdot 3$	50.4	-0.9	0.392	0.375	-0.017
September		53.9		51.3	50.	-0.9	$0 \cdot 3$	0.309	-0.012
October -	$\cdot 7$	471	-0.6	$45 \cdot 4$	4			0.245	-0.028
November -	42.7	4	$-3 \cdot 3$	7	$37 \cdot 9$		0.273 0.240		0.00
Decenl	39.0	6	$+0.6$	$36 \cdot 9$	$37 \cdot 0$				

The prevalence of - signs in the 4th and last columns, in all解 except usual, particularly in the month of November.
The following Table contains the weekly value of the relative humidity; the state of complete saturation being represented by 100 :-

51

It would scem therefore that the distribution of humidity has been very irregular, and few general results can be drawn from the foregoing numbers. Its distribution is generally under the influence of local circumstances, and has been in great measure influcnced by the proximity of the River Thames. The most humid station, as mioht be expected, is the Dreadnought Hospital Ship, but the least humid is scarcely to be determined. Those of Highgate and Enficld humit is ceeded in humidity the mean of all others. The following Table contains the mean monthly humidity compared with the humidity of the year 1854:-
table XXVI.-Showing the Montili Differevce of the Hemidity of the Air from the Ayerage, for the Year 185 t.

Moxtns.		Humidity of the Air (Complete Saturation $=1000$.)		Excess in the Year 1854 above the Arerage.
		Average.	Mean in the Year 1854.	
January -	-	885	917	$+32$
February -	-	872	SA 3	-29
March	-	825	795	-30
April		802	775	-27
May -	-	780	850	$+70$
June -	-	758	825	$+67$
July -	-	788	783	-5
August -	-	810	771	-39
September	-	827	770	-57
October -	-	862	846	-16
November .	-	885	916	$+31$
December	-	889	872	-17

From the numbers in the last column, it seems that January, May, June, and November, were more humid than the average, and that the remaining months were less so than usual.

The following Table contains the weight of vapour in a cubic foo of air in every week, and the next Table the monthly values.

TABLE XXVIT-Showing the Monthly Difference from the Aferage of the Weight of Vapour in a Cubic Foot of Air.

From this Table it seems that from June to November there was $\frac{1}{2} \frac{1}{0}$ th less water in the air than the average for these months.

The next Table shows the mean monthly weight of a cubic foot of air under the mean temperature, humidity, and pressure.

TABLE XXIX.-Showing the Monthly Difference fiom the Average of the Weight of a Cubic Foot of Air in the Year 1854.

From this Table it seems that the atmosphere has been more than usually dense in every month excepting January and December.

Direction of the Wind.

The direction of the wind has been observed either by the motion of the clouds or by means of a vane. At some stations I was obliged to dispense with observations from the unfarourable posiobliged to dispense observer for recording them with accuracy. At the Royal Observatory, Greenwich, the direction of the wind is recorded Royal Observatory, Greenwich, the direction's self-registering anemo-
continually by means of Osler's and Whewell continually by means of Osler's and Whewells seli--registereport of the meters, and the resuts are pablishe Tables give the mean direction of the wind, as observed at the several stations during the periods of their continuance:-
table XXX:-Showing the Gexdina Dinscrion of the Wind at the several Sintions.

寿	${ }^{2} 725$	
	stunur 9 \%	
	.xyldad	
	¢	
	${ }^{\text {anf }}$ Sprox	
	-mungavi	
	-mutupors	

These results show that the direction of the wind, as determined at the several stations, are in close accordance with each other.
From them we see that the direction of the wind from July 1 to September 11 was alternately S.W. and N.E.; and out of the 73 days within this interval, the direction is S.W. on 37 days, and N.E. or N.N.E. on 36 days. Its force, however, was much smaller when from the N.E. than from the S.W; but of this I shall treat presently. From September 12 to 26 the general direction was W.S.W.; for 5 days it was mostly S.E.; for 4 days W.S.W.; then light and variable from October 7 to ()ctoler 10, both days inclusive; and from October 11 it was W., and remained a compound of west till the end of the year.

The following ' Cable shows the number of times out of 100 in which the wind blew at the several stations from each of the eight points of the compass till the end of October. The winds from intermediate points were equally divided between the two adjacent points:-
Table XXXI.-Showing the Frequexct of the Several Winds.

Name of Station.	N.	N.E.	E.	S.E.	S.	S.w.	W.	N.W
Sydenham	..	11	5	18	..	9	47	10
Lewisham -	8	15	4	10	s	33	10	12
Royal Observatory -	9	15	4	9	7	34	9	13
Bexley Heath - -	5	13	15	4	10	23	25	5
Brixton Road - -	5	15	3	4	8	33	3	28
Camberwell -	8	6	9	6	2	20	26	23
Battersea - -	6	4	4	6	.	18	20	42
Millbank Prison -	2	5	.	7	7	38	18	33
Brompton -	6	2	2	4	2	16	12	42
Board of Health -	12	9	7	5	2	38	10	14
St. Thomas's Hospital	6	8	13	6	4	20	16	27
Poplar - . -	4	13	13	1	1	25	22	21
Chiswell Street .	14	11	3	10	5	29	6	22
St. Arary's Hospital -	5	9	11	13	3	22	12	27
Bethnal Green -	9	6	4	4	2	28	23	24
St. Pancras -	13	11	..	6	..	30	9	31
Highgate - -	12	6	1	4	32	10	27	8
Means - -	S	9	7	7	7	25	17	26

We learn from these numbers that, in the period from August 25 till October 31, the wind blew nearly three times more frequently from between S.W. and N.W. than from the other points of the compass, which were about equal in amount.

On comparing the numbers in the Table, with those in the lower line, denoting the frequency of each wind for the whole district, it will be seen that southerly winds were in excess at Highgate, it will be seen that southerly winds were in excess at tighgate, and north-westerly in defect. I have but little doubt observer and racy of these observations, having confidence in the Observer and in the geographical position of the station to afford truthful results. Some insight is, therefore, afforded into the inclined currents on the opposite sides of the Metropolis.
At Bexley Heath there is a slight deficiency of N.W. It is like Highgate, an elevated and open district, and the directions are well determined. At Battersea and Brompton there is an excess of the N.W. but both stations are low, and it is likely that the numbers may have been over estimated.

Force of the Wind.

It is difficult to obtain accurate results of this element without adequate instrumental means, which, unfortunately, are very limited The only small available instrument for this purpose with which I am acquainted is Lind's anemometer, but experience with this instrument has led me to place less value in its indications than in those in which the force of the wind is estimated.
From the observations taken at the Royal Observatory, Greenwich, t is found that the square of the numbers in a scale of nine degrees of estimated wind force corresponds to the pounds pressure on a square foot of surface. The nine degrees of wind force, thus estimated, are as follows:-

A gentle breeze	-		-.	-	0
A light breeze, the air being in sensible motion					- $0 \cdot 5$
A brisk or moder	breeze		-	-	- $0 \cdot 7$
A strong breeze	-		-	-	-
A hard wind	-		-	-	- $2 \cdot 0$
A moderate gale	-		-	-	$3 \cdot 0$
A strong gale	-		-	-	- 4.0
A heavy gale	-		-	-	- $5 \cdot 0$
A great storm	-	-	-	-	- $6 \cdot 0$

The strength or force of the wind is thus estimated and conrerted into numbers. The following Table shows the weekly results:-

59

We learn from this Table that the differences between the estimated forces of the wind at the extreme south and north stations are small, but that at the intermediate and low stations the estimated force has at all times been much less. It is not, howerer, to be expected that these results are strictly accurate, from irregularities due to local caises and the unavoidable crrors of observation. In order to lessen their influence, the results from Sydenham, Lewisham, Bexley, St. Pancras, and Highgate have been combined in one group, and the results from the remaining stations in another group. The former would show the mean force of the wind at the outlying stations, and the latter at the central stations. These numbers were then couverted into pounds pressure on a square foot of surface by the following Table:-
0.25 by estimation, corresponds to 1 oz . pressire on a square foot.

$0 \cdot 50$	$"$	$"$	4 oz.	$"$	$"$
$0 \cdot 75$	$\#$	$"$	9 ozs.	$"$	$"$
$1 \cdot 00$	$"$	$"$	1 lb.	$"$	$"$
1.5	$"$	$"$	24 lbs.	$"$	$"$
$2 \cdot 0$	$\#$	$"$	4 lbs.	$"$	$"$

In this way the next Table was formed.
table Xxxifl.-Showng the Mlay Force of the Wind by Estimation, and in ibs. Pressure on a Square Foot of Surface, at the Bownday and Central Stations.

$\frac{1854 .}{-}$	Mean Force of tile Wind				General Direction of the Wind.
	Estimated		In pouncis pressure on a square foot of surface.		
		Central Stations.	Northern and Southern Stations.	Central Stations.	
July 1 to July 6 -	$1 \cdot 5$	\cdots	lbs. oz. 2 2 0	lbs. oz. .	S.W.
July 7 to July 11	$0 \cdot 7$..	08	..	N.N.E.
July 12 to July 22	$1 \cdot 3$.	18	..	W.S.W
July 23 to July 20 -	$1 \cdot 1$	\cdots	$\begin{array}{ll}1 & 3 \\ 2\end{array}$	\cdots	SW.
July 30 to August 2 -	1.5	\cdots	$\begin{array}{ll}2 & 4 \\ \\ 1\end{array}$		S.W.
August 3 to August 8 -	$1 \cdot 2$	\cdots	$\begin{array}{ll}1 & 7 \\ 9 & 6\end{array}$		N.N.E.
August 9 to August 24.	1.6 0.8	.	2 0 0 10		N.E.
August 25 to Sept. 11 -	0.8 1.2	$0 \cdot 5$	1 1 1	$0_{0}{ }_{4}$	w.S w.
Sept. 27 to October 2 -	$0 \cdot 5$	$0 \cdot 3$	0 4	0 1 $1 \frac{1}{2}$	E.S.E.
October 3 to October 6	$1 \cdot 2$	$0 \cdot 5$	17	04	S.W.
October 7 to October 10	$0 \cdot 8$	$0 \cdot 4$	010	$0 \stackrel{21}{3}$	E.N.E
October 11 to Nov. 12 -	$1 \cdot 1$	0.4	$\begin{array}{ll}1 & 3 \\ 0 & 6\end{array}$	$\begin{array}{ll}0 & 2 \frac{12}{3} \\ 0 & 4\end{array}$	${ }_{\text {S. }}^{\text {S.W. }}$
Nov. 13 to Nov. 16 Nor. 17 to Nov. 20	0.6 1.5	0.5 0.6	1 0 2	$\begin{array}{ll}0 & 4 \\ 0 & 6\end{array}$	S.E.
Nov. 21 to Nov. 23	$1 \cdot 0$	0.5	10	$0{ }_{0}$	S.W.
Nov. 24 to Nov. 26	0.7	$0 \cdot 4$	08	${ }^{0}{ }^{2 \frac{1}{2}}$	N.
Nov. 27 to Dec. 31	0.9	$0 \cdot 6$	013	06	W.S.W.

From these results it would appear that the force of the wind has been very much less at the stations of low elevation than over the high and outlying stations. The ratio of estimated force is as $2 \frac{1}{2}$ to 1 . The difference of force is, however, more clearly shown in the numbcis in the third and fourth columns, showing the simultaneous pressure

61

on a square foot of surface at the two groups of stations. From these it appears that dhring the windy period following the almost calm weather ending September 11, whilst the average pressure at the boundary stations was 1 lb . 7 ozs , it was only $\frac{1}{4} \mathrm{lb}$. on the same surface at those situated in the heart of London; and similar differences of pressure are shown in the other numbers of this Table. The small pressure thus found to exist at the central stations implies that for the greater number of hours in the night the air must have been in an absolutely calm state, and that in the periods from August 25 to September 11, Scptember 27 to October 2, and from October 7 to November 12, there was an upper but no under current of air.
It is now necessary to compare the velocity of the air in its daily motion during the period under investigation with the average velocity for the same period of the year, as determined from a series of observations.

Velocity of the Air.
The horizontal movement of the air was determined daily by the use of Whewell's anemometer, at the Royal Observatory Greenwich. It has been in use since the year 1845 , from which time the daily movernent of the air has been ascertained. The following Table shows the average movement of the air, as found from the observations of the years from 1845 to 1853 inclusive.

Table XXXIV.-Showing the Average Dahit Horizontal Movenent of the Air.

Day of Month.	Juls.	August.	September.	Octcber.	Norember:	December.
	miles.	miles.	miles.	miles.	miles.	miles.
1	168	67	109	105	108	141
2	121	85	102	98	111	144
3	134	S6	81	110	98	116
4	71	102	79	143	117	159
5	98	96	S2	122	159	156
6	115	107	71	128	142	167
7	110	106	66	158	171	147
8	107	116	77	134	116	138
9	125	135	86	151	103	138
10	104	101	s6	124	107	158
11	76	141	67	92	328	127
12	77	S3	100	103	94	109
13	78	103	77	101	83	110
14	109	92	52	108	86	161
15	87	108	86	90	106	183
16	98	93	104	67	152	183
17	98	97	93	134	167	136
18	120	128	95	143	146	133
19	121	140	93	117	152	146
20	118	132	97	124	169	133
21	127	117	119	146	112	109
22	106	74	94	150	157	107
23	94	84	80	146	145	71
24	83	86	66	126	137	71
25	121	123	97	103	163	106
26	111	161	122	89	117	171
27	114	131	115	118	102	101
28	81	98	91	96	131	S2
29	89	89	121	84	128	108
30	93	84	123	99	137	${ }^{106}$
31	110	81		88		95
Means -	105	105	91	116	128	129

Tabre XXXV.--Showing the Horizontal Movement of the Air-cont.
TABLE XXXV.-Showing the Horizontal Movement of the Aur.

TABLE XXXV．－Showing the Horizontal Movement of the Air－cont．

Table XXXV．－Showing the Horizontal Movement of the Air－cont．

Days of the Month．	Horizontal Movement of the Air in Miles．								
	N．	N．E．	E．	S．E．	S．	S．W．	W．	N．W．	The whole or part of the day calm．
	miles．	miles．	miles．	miles．	miles．	miles．	miles	$\overline{\text { miles }}$	
December 1	\cdots	．	．	．．	．．	\cdots	185	\cdots	－
2	．	．			．．	80		．	
3	．	\ldots	．	．．	．	137	138	．	－
4	．	．	．	．	\cdots	145	145	．	－
5	\cdots	\cdots	．	\cdots	\because	245	\cdots	．	－
7	$\ddot{62}$	\cdots	\because	\ldots	\cdots	83	82	\cdots	－
8		\cdots	\cdots	\ldots	\because	165		\cdots	二
9	\cdots	\cdots	\cdots	．	\cdots	．	113	112	－
10	48	47	．	\ldots	\ldots	\cdots	\cdots	12	二
11	\cdots	\cdots	．	．	．	160	\because	．	－
12	\because	\because	\cdots	\because	\cdots	75	75	．	－
14	\cdots	\cdots	\because	\because	\cdots	265 290	\cdots	\cdots	－
15	．	．	．	．	\cdots	163	162	\cdots	－
16	\cdots	．．	．	．	\cdots	83	．	82	－
17	\because	．	．	．	．	78	77	8	
18	122	\cdots	．	．	．．	123	．	\because	－
19	35 70	．	．	\cdots	\cdots	35	\cdots	35	－
$\stackrel{1}{21}$	70	\cdots	\ldots	\cdots	\cdots	$\stackrel{\square}{105}$	$\ddot{105}$	70	－
22	\cdots	\cdots	\ldots	\cdots	\cdots	125	125	\cdots	－
23	\cdots	．	\cdots	\cdots	\cdots	40		40	－
24	\ldots	．	．	．	．	\cdots	230	\cdots	－
25	．	．	．．	．	．	110	110	．	
26	\cdots	\cdots	．	．	．	113	112	\cdots	－
$\stackrel{27}{28}$	9	\cdots	\cdots	\cdots	．	\cdots	80	．	－
29	22	\because	\cdots	\cdots	\cdots	$\ddot{52}$	23 53	\because	二
30	\cdots	\cdots	\cdots	\cdots	\cdots	42	$\stackrel{53}{43}$	\cdots	
31	．．	\cdots	．	\cdots	．	．	300	．．	
Sums－	359	47	\cdots	－	－•	2714	2301	339	Average per day， 186 miles．

The directions of the wind from day to day are shown in these Tables，as well as the horizontal movement of the air in miles．The figures in the lower lines show the number of miles the air has moved in each direction，referred to eight points of the Azimuthal Circle，and the average number of miles daily，independently of direction．By comparing the latter with those in the lower lines of Table XXXIV．，it will be seen that in July，the daily motion of the air was less than its average by 36 miles；in August by 27 ；in September by 14 ；in October by 34；in November by 42 ．In Secember its velocity was greater by 57 miles daily．In July a calm was noted on 16 days；in August on 19 days；in Scptember on 17 days；in October on 13 days；in November on 3 days，and none in December．Thus，out of the 123 days，from July 1 to October 31， a calm was noted on 65 days，or one half of the whole number． The exceptions to this oppressive state were，on July 3，6，19，and 26；August 12，14，15，23， 24 ；September 12 to September 24,

E

October 5, 7, 8, 11, 17, 18, 19, 20, 23, 24, and 28. In July the greatest pressure on the surface of a square foot was 2 lbs . in one en ${ }^{2}$ in August of 5 lbs . on the 24 th ; in September of 7 lbs . on the 24th; and in October of 10 lbs . on the 18th
In each month the sum of the velocities is the greatest with the SW. wind; the next in order, in July, was N.E.; in August N.W.; in September and October W.; in November N.N.E.; and in December N.N.W.
By resolving the sum of the horizontal movements of the air for each of the compound directions of the wind into two component forces, by multiplying each force by the cosine of the angle which its direction makes with the cardinal, the following results are obtained :-

$1854 .$ MoхтнS.	Direction of the Wind.			
	N.	E.	S.	W.
July - -	376	448	871	1,121
August -	627	99	1,032	1,457
September -	358	274	994	1,437
October	831	564	846	1,187
November -	830	505	1,355	1,248
December -	552	31	1,919	4,460

From these numbers it appears that in-

$\text { July }\left\{\begin{array}{c} \text { the S. horizontal movement } \\ \text { exceeded the N. by } \end{array}\right\}$		495 Sriles; $\left\{\begin{array}{c}\text { and the W. exceeded } \\ \text { the E. by }\end{array}\right\}$			${ }_{\text {c }} 673$ Miles.	
Aug.	"	405	"	"		
Sept.	"	636	"	"	,	
Oct.	"	15		"	743	"
Nov.	"	525			4,129	"
Dec.		1,367		"		

By taking the means of the numbers in Table XXXV. correspondng to the period during the continuance of each wind, and also those observed within the same periods, the next Table is formed, showing the relative horizontal movement of the air, as compared with its mean value.

Table XXXVI.-Showing the Comparison of the Average with the daily obseryed Horizontal Movement of the Air

1854. Period of Continuance.				General Direction of Wind.	Daily Horizontal Movement of the Air.	
					Observed.	Daily Difference from Average.
July 1	1 to July ${ }^{\text {b }}$	-	-		miles.	$\begin{array}{r} \text { miles. } \\ -47 \end{array}$
	$7 \% 11$	-	-	$\begin{gathered} \text { S.W. } \\ \text { N.N.E. } \end{gathered}$	35	- 83
	12 " 23	-	-	W.S.W.	88	- 16
	$24 \quad \% \quad 29$	-	-	N.E.	65	- 34
	30 to Aug. 2	-	-	S.W.	101	+ 12
Aug.	3 \% 8	-	-	N.N.E.	80	1-22-11
	$9 \% \quad 24$	-	-	S.W.	96	
	25 to Sept. 11	-		N.E.	31	- 62
Sept.	12 , 26	-	-	W.S.W.	132	+ 40
"	27 -	-	-	E.S.E.	35	-80
	28 to Oct. 2	-	-	Calm.	0	-136
Oct.	3 \% 6	-	-	S.W.	132	+ 7
,	7 , 10	-	-	E.N.E.	115	- 27
	11 to Nor. 12		-	S.W.	83	-31
Nov.	13 , 16		-	S.E.	81	- 26
"	17 \% 20	-	-	N.E.	122	- 37
"	21 " 23	-	-	S.W.	82	- 56
"	$24 \quad \ddot{26}$	-	-	N.	75154	$\begin{aligned} & -64 \\ & +\quad 26 \end{aligned}$
\%	27 to Dec. 31	-	-	W.S.W.		

The sign - denotes below the arerage, and + above the average.
From the numbers in this Table it will be seen that the velocity of the air has been much less than usual. From July 1 to September 11, with the exception of the four days between July 30 and August 2, it was moving with a diminished rate, and at times its velocity was very small, particularly in the period from August 25 to September 11, when its velocity was one-third only of its average; and in that of September 27 to October 2, when its velocity was only one-fourth part of its average for those days. These periods were the calmest within the series, and it is found in the preceding section that, although there was a slight upper current at high places, there was none at low; at the latter there was a dead calm, and the air was stagnant.

Electricity.

Till the end of September instruments for the observation of atmospheric electricity could not be obtained. At this time delicate and sensitive electrometers, made by Watkins and Hill, were supplied to six stations. Unfortunately one of them beceme supplied to six stations. deranged, and was not again in order the following Tables give the results for every day.

TABLE XXXVII.-Showing the Electricity of the Atmosphere at the several Stations.

Montir akd Max.	Lewisham. M	Millbank.	Board Health, White-	st. Thomas's Hospital	Poplar.	St. Mary's Hospital.	Highgate.

Table XXXVII.-Showing the Electricity of the Atmosphere at the

$\begin{gathered} \text { Moxiti } \\ \text { axd Dat. } \end{gathered}$	Lewisham.	Mrillbank.	Board Health, hall.		Poplar.	St. Mary's Hospital	Highgate.
November			0.15 0.15 0.07 0 0 0.02 0		二 - $=$ $=$ $=$ - $=$ - - $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ -		
December 1			0.07 0.10 P. 0.1 0. 0. 0.07 0. 0.15 0.17 0.0 0.0 0.07 0.07		mod. x . mod. \boldsymbol{r}.		

From these Tables we learn that at Lewisham in September From these Iables we leat on 27 days, and on three days not at all. - In October it was positive on 28 days, negative on 2 days, both positive and negative on 3 days, and on one day none at all. In positive and negative on 3 days, and on one day none at an. . . 22 days ; both positive November positive electricity was present on 22 days, In December and negative on 6 days, and none positive on 29 days, and none on 2 days. Then out of 122 days, from September 1 to December 31, common positive electricity was shown on 103 days, negative on 2 days; both negative and positive on 9 days, and on 8 days none was shown. Its strength was moderate and weak in September; frequently strong from the 6th of October till the beginning of December, and moderate and weak throughout this month.

At the Board of Health observations were began on Scptember 28 and from this time to the end of the year, positive electricity was noted on 70 days, and negative on 7 days; on three days none at all At Willbank Prison observations were began on October 26, and positire electricity was noted on 55 days, negative on 31 , and none on three days.
At St. Thomas's Hospital positive electricity was noted in October on 24 days, negative on 1 day, and none on 5 days; in November positive electricity on 17 days, negative on 1 day, and none on 12 days; in December positive on 25 days, and none on 6 days. Thus out of 92 days, from October 1 , positive electricity was noted on 66 days, negative on 2 days, and none at all on 23 days.
At St. Marg's Hospital the observations began on October 1 , and ceased on December 9 ; within this interval on 28 days positive electricity was noted, on 3 days negative electricity, and on 36 no electricity at all.

At Highgate the observations began on October 1, and with the exception from December 10 to December 23, continued to the end of the year. Positive electricity was noted 44 times, negative 9 times; on 23 days the instrument was unaffected.

It is desirable to direct some attention to those days on which negative electricity was noticed at some stations and positive at others. On October 3, 4, and 5, negative electricity was noticed at the Board of Health ; on the 6th negative electricity was shown at the low stations and positive at the high; on the 12 th, 14 th, 15 th, and 16 th and 16 thegative electricity was noticed at Highgate, and Highgate, other stations; on the 17th negative at Lewisham and Highgate, and positive at intermediate stations; on the 18th positive at south stations and negative at north; on the 20th negative at St. Mary's Hospital and positive elsewhere; from the 27 th to the 30 th negative Millbank Prison. On November 4th the electricity was positive nd negative at the different stations, and variable in strength; on he 2 st it was negative at Millbank and the Board of Health. In December it was negative at Highgate on the 1st and 2d, and was requently negative at Millbank Prison, and almost always negative at Poplar during the month. With these exceptions, the observations of atmospheric electricity taken at the scveral stations were in close accordance with each other, both in kind and in tension.

Ozone.
I rejoice that the persevering spirit of inquiry which distinguishes the present age should have added another meteorological element of investigation to the preceeding, one too, which if somewhat verging upon the field of chemical inquiry, promises to be a subtle and important agent in aid of this research into the nature and extent of peteorolocical influences upon the rise and progress of cholera. That these influences are preat it is not possible to doubt, and equally imposible it is to believe that uncombined with others they are sufficient to account for the sudden and formidable growth of a disease, which in a few weeks from hitherto unexplained causes rises with giant strides into a devastating power, more formidable than any our country has yet known, and which with even greater rapidity has subsided to be renewed, when we know not, unless a series of investigations like the present shall reveal to us the conditions of its rise and pers. The conjoining here a link of inquiry from a field so fraught to the cotire investionation as that of chemistry,
 consider greatly in aid of this inquiry, and purpose to digo

Ozone, first discovered by Dr. Schonbein in 1848, has since that date in England been sedulously investigated by Dr. Moffat. This indefatimable observer considers it to exercise an important influence the animal economy, and believes that it may be found a means of materially inducing or modifying diseased actions, in which opinion he is supported by Dr. Schonbein.

In order to investigate the daily developments of this agent in the atmosphere during the epidemic of cholera, strips of test paper, as purchased from int Cox at Peckham, and which he assured me he received direct from Professor Schonbein's agent, were distriuted to all the metropolitan stations; and other test papers, prepared by Dr. Moffat himself, were similarly distributed. The directions for noting the presence and measuring the amount of ozone are very simple, being the free exposure to the atmosphere protected from rain and the direct rays of the sun) of a small strip of dry paper, previously saturated with a solution of starch and
 exposure, to brown, or when immersed in water, to purple, attestis the presence of ozone, and the degree of discoloration its intensity and amount, these changes in the paper are caused by the iodine being set free, through its power of oxidising the potassium of the iodide.
In the course of the observations, a test paper of each kind wa exposed in the morning and evening daily at every station. It was ound that the papers prepared by Dr. Moffat, were more sensitive an those of Dr. Schonbein and accordingly indicated the presence of a mon indicated by those of Schonbein. The fullowing results are therefore based entirely on Moffat's papers.
From August 24 till September 4 there was no ozone at an station near the metropolis, and very little at any station over the country; a little was shown on September 5, and from this time after wards was exhibited cencrally. It was most abundant on Septembe 24 October $78,11,18,25$, November 19, 20, 24, 25 , and 26.
The following Table shows the mean amount in each week, the greatest intensity being represented by 10 .
72

74

		8		$\stackrel{\text { a }}{0}$	$\stackrel{7}{6}$	：	野	$\stackrel{9}{0}$		0	\％	$\stackrel{\square}{0}$	$\stackrel{\stackrel{\circ}{\circ}}{ }$	$\stackrel{\infty}{\dot{\circ}}$
		\％		？	$\stackrel{5}{5}$	－	$\stackrel{0}{\circ}$	$\stackrel{\circ}{\circ}$			$\stackrel{\square}{0}$	$\stackrel{8}{6}$	\％	$\stackrel{\square}{0}$
	苞	9		$\stackrel{7}{5}$	$\stackrel{\circ}{\circ}$	：	\％	$\stackrel{\infty}{\square}$		：	$\stackrel{\infty}{0}$	$\stackrel{\%}{0}$	倠	$\stackrel{\text { ？}}{0}$
	ค	\sim		\％	$\stackrel{\square}{\circ}$	：		！		：	$\stackrel{7}{0}$	$\stackrel{0}{0}$	$\stackrel{H}{\square}$	$\stackrel{\sim}{\dot{\circ}}$
		\cdots		$\stackrel{0}{8}$	永	：	\％	$\stackrel{\otimes}{0}$			$\stackrel{8}{0}$	잉．	잉	5 0 0
		䫆		－	䛡	$\stackrel{\square}{\circ}$	$\stackrel{?}{i}$	吕		－	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{0}$	$\stackrel{7}{0}$	：	－
		\pm		융	잉	荌	$\stackrel{3}{\circ}$	융		：	\％	8	$\stackrel{18}{0}$	－
		$\stackrel{7}{7}$		¢	$\stackrel{\%}{\circ}$	$\stackrel{\text { ¹ }}{\stackrel{1}{\circ}}$	$\stackrel{7}{-}$	$\stackrel{8}{\circ}$		－	$\stackrel{9}{0}$	：	$\stackrel{10}{6}$	$\stackrel{\square}{\square}$
		\because		$\stackrel{\bigcirc}{\circ}$	$\stackrel{?}{0}$	잉	잉	\％	\％	앙	\％	：	\％	$\stackrel{\rightharpoonup}{\circ}$
	曾 号	$\stackrel{7}{*}$		$\stackrel{\square}{\stackrel{\circ}{4}}$	亏ī	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{8}{0}$	$\stackrel{\text { 융 }}{ }$		－	$\stackrel{\text { ¢ }}{\text { ¢ }}$	：	\％	$\stackrel{\infty}{\infty}$
		－	\pm	¢	$\stackrel{5}{4}$	$\stackrel{\square}{0}$	$\stackrel{\circ}{0}$	$\stackrel{\ddot{\circ}}{\circ}$		\％	$\stackrel{\circ}{\circ}$	：	管	$\stackrel{\text { P }}{\substack{\text { ® }}}$
		\＃		$\stackrel{9}{9}$	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{7}{0}$	$\stackrel{8}{8}$		$\stackrel{\cong}{\circ}$	$\stackrel{\text { 웅 }}{ }$	：	$\stackrel{\square}{0}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{0}$
		－		召	$\stackrel{1}{6}$	$\stackrel{\square}{\square}$	零	$\stackrel{\square}{0}$		：	$\stackrel{7}{6}$	：	$\stackrel{\square}{\circ}$	5
		8		）	8	$\stackrel{\circ}{\circ}$	：	$\stackrel{8}{-}$		－	$\stackrel{\circ}{\circ}$	：	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$
		\because		管	$\stackrel{\square}{0}$	$\stackrel{0}{0}$	：	$\stackrel{2}{\square}$		$\stackrel{\infty}{0}$	$\stackrel{\rightharpoonup}{\text { ¢ }}$	：	\％	
		\because		\％	$\stackrel{?}{6}$	융	：	¢0		$\stackrel{\circ}{\circ}$	웅	\％	令	管
		\cdots		\％	$\stackrel{\circ}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{\circ}{\circ}$	\％		$\stackrel{\circ}{0}$	$\stackrel{8}{\text { ¢ }}$	$\stackrel{8}{\circ}$	\bigcirc	8
		\cdots		\％	$\stackrel{\circ}{\circ}$	$\stackrel{8}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$		\bigcirc	8	¢	$\stackrel{\circ}{\circ}$	8
	$\begin{aligned} & \text { 考 } \\ & \text { 弟 } \end{aligned}$	8		号	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{\circ}}$	：	：			：	$\stackrel{\square}{0}$	앙	$\stackrel{1}{\circ}$	$\stackrel{\square}{\square}$
		9		苞	$\stackrel{\square}{0}$		：			：	－	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	－
		3		我容	$\stackrel{\square}{6}$	：	：			：	¢	\％	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\square}{\circ}$
		\sim		官 $\overrightarrow{\text { ¢ }}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	：	：			：	$\stackrel{\text { ¢ }}{\text { ¢ }}$	¢	$\stackrel{\text { F }}{\text { ¢ }}$	¢
	$\begin{aligned} & \text { H } \\ & \stackrel{y}{5} \end{aligned}$	8		容	¢	：	：			：	－	$\stackrel{1}{6}$	$\stackrel{\square}{0}$	$\stackrel{7}{\square}$
		웅		安：	\％	：	：				－	$\stackrel{\square}{0}$	$\stackrel{\square}{\circ}$	\％
		$\stackrel{1}{\square}$		宸	$\stackrel{\text { ¢00 }}{\text { ¢ }}$	：	：			：	$\stackrel{\square}{0}$	哭	¢	$\stackrel{\text { ¢ }}{\circ}$
		∞		产	管		：				$\stackrel{?}{\square}$	$\stackrel{\square}{\circ}$	¢	$\stackrel{7}{\circ}$
														号

The numbers in the lowest line give the weekly fall of rain over the Metropolis．By comparing the results from each station with these values，it will be seen，that there is，for the most part，a close agreement in the amount of rain－fill；the most remarkable difference is that shown in the week ending August 5 ，between the two stations of St．John＇s Wood and Enfield，the former showing an excess above the mean of 0.56 inch，and the latter a deficiency below it of 0.76 inch．

Out of the 136 days，between July 12 and November 25，rain fell on 43 days；it fell plentifully on August 1，3，and 4；Sep－ tember 13；October 6，19， 25 ；and November 16．On August 3， the fall amounted to 1.4 inch；it fell scantily on 18 days，each fall being less than four－hundredths of an inch，and on 7 other days it was less than one－tenth of an inch．In the iperiod from August 24， （on which day rain fell to the depth of 0.02 inch，）till September 12 ， no rain fell，and none fell between September 23 and October 6 ． The quantity of rain which fell in September was much below the average．On 93 days out of the 136 ，ending November 25 ，no rain at all fell．

It is desirable，before proceeding further with the rain－fall，to know its average amount at one or more stations within the Metropolitan districts，as deduced from the mean of several years．For this purpose， I have two series of observations，the one at St．John＇s Wood，taken by George Leach，Esq．，and the other at the Royal Observatory Greenwich；the former station is situated to the north and the latter to the south of London，both series extending without interruption over 15 years．The results of these two series are shown in the following Tables．
Table XL－Montily Fall of Rain at the Rotal Observatorf
Greanwici，in Inches，from the Year 1840 to 1854.

Years．	Jan．	Feb．	Mar．	April．	د1ay．	June．	July．	Aug．	Sept．	Oct．	Nov．	Dec．
	in．											
1840	$2 \cdot 4$	$1 \cdot 2$	$0 \cdot 3$	$0 \cdot 1$	$2 \cdot 1$	1.5	1.7	$1 \cdot 1$	$2 \cdot 9$	$1 \cdot 6$	$2 \cdot 9$	$1 \cdot 6$
1841	$2 \cdot 1$	1．3	$1 \cdot 3$	$1 \cdot 9$	$2 \cdot 1$	2.7	$3 \cdot 6$	$2 \cdot 2$	$4 \cdot 0$	$6 \cdot 0$	3.7	$2 \cdot 4$
1842	1．0	$1 \cdot 1$	1.9	$0 \cdot 4$	$2 \cdot 1$	$1 \cdot 0$	$3 \cdot 0$	$1 \cdot 8$	$4 \cdot 0$	$1 \cdot 4$	$4 \cdot 2$	0.7
1843	$1: 4$	$2 \cdot 4$	$0 \cdot 5$	1．7	$3 \cdot 8$	1.3	2.4	3.6	$0 \cdot 5$	$4 \cdot 3$	$2 \cdot 3$	0.4
1844	$2 \cdot 4$	$2 \cdot 3$	$2 \cdot 9$	$0 \cdot 4$	$0 \cdot 4$	1.8	$2 \cdot 8$	$2 \cdot 0$	$1 \cdot 2$	$4 \cdot 0$	$4 \cdot 3$	$0 \cdot 4$
1845	$2 \cdot 4$	0.9	1.5	0.6	$2 \cdot 2$	$1 \cdot 9$	$1 \cdot 9$	$3 \cdot 1$	$2 \cdot 1$	$1 \cdot 4$	$2 \cdot 4$	$2 \cdot 0$
1846	$2 \cdot 8$	1.5	$0 \cdot 9$	$3 \cdot 1$	1.5	0.5	$1 \cdot 5$	$4 \cdot 0$	$1 \cdot 5$	$5 \cdot 1$	$1 \cdot 5$	$1 \cdot 1$
1847	$1: 4$	$1 \cdot 4$	$0 \cdot 8$	$1 \cdot 0$	$1 \cdot 4$	1.5	$0 \cdot 7$	$2 \cdot 0$	1.6	$2 \cdot 0$	$2 \cdot 0$	$2 \cdot 0$
1848	1：2	$2 \cdot 6$	$3 \cdot 1$	$3 \cdot 4$	0.4	$3 \cdot 5$	$2 \cdot 0$	$4 \cdot 3$	2.4	$3 \cdot$	1．2	$2 \cdot 6$
1849	1：6	$2 \cdot 2$	$0 \cdot 5$	$2 \cdot 2$	$3 \cdot 9$	$0 \cdot 2$	$2 \cdot 9$	0.5	$3 \cdot 3$	$2 \cdot 7$	$1 \cdot 5$	$2 \cdot 4$
1850	1.2	$1 \cdot 3$	$0 \cdot 3$	$2 \cdot 3$	$2 \cdot 4$	$0 \cdot 9$	$2 \cdot 9$	1.9	$2 \cdot 3$	$1 \cdot 4$	$2 \cdot 5$	3
1851	2.7	$1 \cdot 2$	$4 \cdot 1$	$2 \cdot 3$	$0 \cdot 8$	$1 \cdot 3$	$4 \cdot 3$	$1 \cdot 5$	$0 \cdot 4$	1.8	$0 \cdot 6$	0.6
1852	3.6	$0 \cdot 9$	$0 \cdot 2$	$0 \cdot 5$	1.9	4.6	$2 \cdot 3$	$4 \cdot 4$	3.8	$3 . \mathrm{S}$	6.0	$\underline{2} \cdot \underline{2}$
1853	$2 \cdot 0$	$0 \cdot 9$	1.5	$3 \cdot 1$	$1 \cdot 6$	$2 \cdot 8$	6.0	$2 \cdot 2$	$2 \cdot 4$	$4 \cdot 3$	1.5	0.7
1854	1.7	1.0	$0 \cdot 4$	$0 \cdot 6$	$3 \cdot 3$	$1 \cdot 0$	$1 \cdot 7$	$2 \cdot 9$	0.7	$2 \cdot 6$	$1 \cdot 4$	1.4
Means－	$2 \cdot 0$	$1 \cdot 5$	$1 \cdot 3$	1.6	$2 \cdot 0$	1.8	$2 \cdot 6$	$2 \cdot 5$	$2 \cdot 2$	3．0	$2 \cdot 5$	4

Table Xli．－Monthly Fall of Rain at St．John＇s Wood，in Inches， from the Year 1840 to 1854.

Years．	Jan．	Feb．	Mar．	April．	May．	June．	July．	Aug．	Sept．	Oct．	Nov．	Dec．
	in．											
1840	$2 \cdot 9$	$1 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$2 \cdot 2$	1.7	$2 \cdot 0$	1.5	$2 \cdot 7$	1.3	$3 \cdot 7$	$0 \cdot 6$
1841	$3 \cdot 1$	$1 \cdot 1$	$1 \cdot 1$	1.7	$2 \cdot 3$	$2 \cdot 5$	$2 \cdot 6$	$2 \cdot 6$	$3 \cdot 8$	4.7	$3 \cdot 3$	$2 \cdot 2$
1842	$1 \cdot 0$	$1 \cdot 4$	$2 \cdot 0$	$0 \cdot 3$	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 1$	$3 \cdot 8$	$3 \cdot 9$	$2 \cdot 0$	$4 \cdot 9$	0.8
1843	$1 \cdot 3$	$2 \cdot 6$	$0 \cdot 5$	$1 \cdot 9$	$5 \cdot 2$	$1 \cdot 2$	$2 \cdot 2$	$3 \cdot 7$	$2 \cdot 1$	$4 \cdot 2$	$2 \cdot 1$	$0 \cdot 6$
1844	$2 \cdot 3$	$2 \cdot 6$	$2 \cdot 5$	$0 \cdot 4$	$0 \cdot 3$	$1 \cdot 3$	$2 \cdot 9$	1.7	$1 \cdot 1$	3.9	$3 \cdot 0$	$0 \cdot 4$
1845	$3 \cdot 2$	$1 \cdot 1$	$1 \cdot 6$	1.0	$2 \cdot 3$	$1 \cdot 4$	$2 \cdot 4$	$2 \cdot 6$	1.5	$1 \cdot 5$	$2 \cdot 3$	$3 \cdot 0$
1846	$3 \cdot 4$	$1 \cdot 4$	$1 \cdot 1$	$3 \cdot 7$	$1 \cdot 5$	$1 \cdot 0$	1.6	$5 \cdot 8$	1.7	$5 \cdot 4$	$1 \cdot 6$	$1 \cdot 2$
1847	$1 \cdot 3$	1.0	$0 \cdot 9$	$1 \cdot 1$	1.8	$1 \cdot 6$	$0 \cdot 8$	$1 \cdot 4$	1.8	$1 \cdot 9$	$1 \cdot 3$	$1 \cdot 9$
1848	$1 \cdot 1$	$3 \cdot 1$	$3 \cdot 4$	$2 \cdot 8$	$0 \cdot 2$	$3 \cdot 3$	2.2	$5 \cdot 1$	$2 \cdot 0$	$3 \cdot 4$	$1 \cdot 1$	$2 \cdot 2$
1849	$2 \cdot 6$	$2 \cdot 6$	0.7	1.9	3.5	0.5	2.9	0.8	$2 \cdot 8$	1.2	$1 \cdot 4$	1.9
1850	1．0	1.0	$0 \cdot 3$	$2 \cdot 6$	$2 \cdot 0$	$1 \cdot 1$	$2 \cdot 6$	0.8	$2 \cdot 4$	$1 \cdot 7$	$2 \cdot 1$	1.5
1851	$3 \cdot 5$	1.0	4.3	1.6	$0 \cdot 6$	1.2	$3 \cdot 7$	$2 \cdot 9$	$0 \cdot 4$	$2 \cdot 1$	0.4	$0 \cdot 6$
1852	$3 \cdot 5$	1.0	$0 \cdot 3$	0.8	$1 \cdot 3$	$5 \cdot 7$	$2 \cdot 5$	3.7	$3 \cdot 6$	$3 \cdot 9$	6.7	$2 \cdot 1$
1853	$2 \cdot 7$	$1 \cdot 1$	1.7	3.1	$2 \cdot 2$	$2 \cdot 4$	$5 \cdot 2$	1.8	$2 \cdot 1$	$4 \cdot 3$	1．3	0.6
1854	$2 \cdot 3$	1.0	$0 \cdot 4$	$0 \cdot 4$	$3 \cdot 7$	$1 \cdot 1$	$2 \cdot 7$	$2 \cdot 8$	$0 \cdot 7$	$2 \cdot 4$	$1 \cdot 3$	1.7
Means－	$2 \cdot 3$	1.5	$1 \cdot 4$	$1 \cdot 6$	$2 \cdot 1$	1.5	$2 \cdot 6$	$2 \cdot 9$	$2 \cdot 2$	$2 \cdot 9$	$2 \cdot 4$	$1 \cdot 4$

The numbers in the lowest line in each of these Tables give the mean monthly fall of rain，and by taking these means，we have the mean monthly fall of rain over the Metropolis as follows：－

TABLE XLII．－Average Monthly Fall of Rain over London

The sum of these is $24 \cdot 55$ inches，which is the mean yearly rain－ fall at London．
The following Table gives the monthly fall of rain in the year 1854 at the Metropolitan stations，from which I received continuous registers．

Table XLIII．－Monthly Fall of Rain over London in the Year 1854.

Stations．	荘 关 品		$\left\lvert\, \begin{aligned} & \text { 弟 } \\ & \underset{\sim}{4} \end{aligned}\right.$	荡	产	$\stackrel{\dot{\Xi}}{\stackrel{\text { ® }}{0}}$	$\stackrel{\stackrel{\rightharpoonup}{5}}{5}$			$\begin{aligned} & \dot{0} \\ & \text { 菦 } \\ & 0.0 \end{aligned}$		迺
		in．										
Lewisham－	$1 \cdot 7$	$1 \cdot 1$	$0 \cdot 4$	$0 \cdot 7$	$3 \cdot 6$	1.2	$2 \cdot 1$	$2 \cdot 3$	$0 \cdot 8$	$2 \cdot 6$	$1 \cdot 6$	$1 \cdot 4$
Royal Observatory	1.7	$1 \cdot 0$	0．4	$0 \cdot 6$	$3 \cdot 3$	$1 \cdot 0$	$1 \cdot 7$	$2 \cdot 9$	$0 \cdot 7$	$2 \cdot 6$	$1 \cdot 4$	$1 \cdot 4$
St．Mary＇s Hospital	$1 \cdot 3$	1.0	$0 \cdot 4$	$0 \cdot 3$	$3 \cdot 5$	$1 \cdot 0$	$1 \cdot 9$	3.0	$0 \cdot 6$	$2 \cdot 3$	$1 \cdot 2$	$1 \cdot 5$
St．John＇s Wood	$2 \cdot 3$	1.0	$0 \cdot 4$	$0 \cdot 4$	$3 \cdot 7$	$1 \cdot 1$	$\underline{2 \cdot 7}$	$2 \cdot 8$	$0 \cdot 7$	$2 \cdot 4$	1.3	1.7 1.3
Enfield－－	$2 \cdot 1$	$0 \cdot 9$	$0 \cdot 3$	$0 \cdot 5$	$3 \cdot 3$	1.0	$1 \cdot 3$	$1 \cdot 8$	$0 \cdot 7$	$2 \cdot 1$		$1 \cdot 3$
Means．	82			$10 \cdot 503$				$42 \cdot 56$	$60 \cdot 702$	$2 \cdot 40$		$1 \cdot 46$

The numbers in the lowest line give the monthly fall of rain over the Metropolis during the year 1854．By comparing them with the numbers showing the mean monthly fall for London，it will be seen that there has been a deficiency of rain in every month，except－ ing in May and December．
The fall of rain in the Metropolis in the year 1854，was 18.62 inches，being 5.93 less than the average fall for the year．

Clouds．

The amount of cloud was observed at most of the stations，and the results are in close agreement with each other．The results are as follows，an overcast sky being represented by 10 and a cloudless sky by 0 ，and intermediate states by intermediate numbers：－

In the two weeks ending July 15，the amount of cloud was 9
In the two weeks ending July 29，
In the four weeks ending Aug． 26
In the two weeks ending Sept．9，
In the two weeks ending Sept．23
In the week ending Sept．30，
In the week ending October 7 ，
In the week ending October 14
In the week ending October 14，
In the week ending October 21 ，
In the week ending October 21，
In the week ending October 23，
In the week ending October 28，
In the week ending November 4 ，
In the week ending November 11 ，
In the week ending November 18，
In the week ending Norember $2 \overline{5}$ ，
In the week ending December 2，
In the week ending December 9，
In the week ending December 16，
In the week ending December 23 ，
In the week ending December 30，

$"$	5
$"$	8
$"$	3
$"$	6
$"$	$1 \frac{1}{2}$
$"$	6
$"$	$4 \frac{1}{2}$
$"$	$7 \frac{1}{2}$
$"$	5
$"$	$3 \frac{1}{2}$
$"$	6
$"$	$8 \frac{1}{2}$
$"$	8
$"$	6
$"$	5
$"$	6
$"$	7
$"$	5

Comparison of the Meteorology of London，Worcester，Liverpool， Dunino，and Arbroath．
The foregoing section closes the amount of meteorological data I have been able to collect within the prescribed limits of time and
place. I am now going to institute a brief comparison of London meteorology with that of Worcester, Liverpool, Dunino, and Arbroath, for the same period. For the means of comparison I am indebted to the observations carried on under my superintendence by some of my best observers, members of the British Meteorological Society; the insufficiency of these observations to supply the required dor this special investigation is to me a matter of regret, and arises from the circumstances that my incuiries litherto have been scarcely at all to the meteorology of towns, which, as entering into a scheme for eliminating the laws of climate, would vitiate the accuracy of results intended to be of general application. For this reason I have instituted observations upon the outskirts of cities, and as far removed from their influence as possible; but that which is wanting to give value to the present inquiry is a definite knowedge of the mondion of the town abo mentioned of which I have chosen Worcester and Liverpool as being visited by the Cholera at about the same time as the Metropolis, but to a less degree, and Dunino and Arbroath, as being far north, and enjoying a comparative if not total immunity from the ravages of the Great Devastator
To obtain the required knowledge, similar observations to those aken in the Metropolis should be instituted in the most considerable of our provincial towns, and more particularly in those where disease and Cholera have been the most rife. We should then ascertain, whether a similarity of meteorological conditions attended a comparative amount of Cholera, and whether, and if so to what extent, similar meteorological influences existing in the Metropolis extended to or found existence in the many populous cities and towns of the United Kingdom.

Having most completely under my daily observation meteorological records, applying to more than one hundred different localities in Great Britain, I am able to estimate with tolerable accuracy the influence of geographical position upon climate, and the amount of abnormal departure due to local and unremovable causes. Had I, in addition, for as many years directed my attention to the meteorology of towns and cities, I should now have been in a position to bring forward a mass of evidence respecting the cause of their comparative insalubrity, and have been enabled to perform more satisfactorily this important part of my inquiry.

It should, however, be borne in mind that meteorological research, involving so much continuous and constant aid, is far too laborious to be taken up without the stimulus of some definite and ulterior object ; and the clear elucidating of the meteorological influences at work to cause the insalubrity of towns has until lately promised little repause the little repayment to those who would were the meteorology of our towns carefully ascertained and collated with that of the Metropolis, and both together with that of the country generaily, of which last I have a foundation of many years continuous observations, that in a short time we should be in a condition to elucidate a clear insight into the meteorological causes of Cholera, Influenza, and
many phases of disease which now burst upon us with the suddenness and devastating power of a divine and wrathful visitation.
The conditions most favourable to health in all cases are an average degree of pressure, temperature, and humidity. A departure from these conditions at once tells upon the public health in a degree proportional to the amount of departure. Thus we see that in the country at large, in obedience to the laws of climate, an equal degree of health is not always to be enjoyed, nor an equal degree of mortality to be expected.

The more, therefore, in towns that these conditions are violated, the greater must be the departure from the standard of public health That this standard is too widely departed from in many of our largest towns, is an undeniable fact, and an inquiry into the causes in operation to produce it is greatly to be desired; the more especially as we are well aware that it is among the lower orders of the population that the greatest mortality occurs, a fact which speakingly proclaims the cause in a great measure to be remedial.

That the main causes of insalubrity arise from the violation of the climatic laws applying to the district, is evidenced by the comparative salubrity of the outskirts of towns, where the natural conditions of the district are nearly always in force excepting when subjected to the impurities and disturbing town influences, which in certain states of the atmosphere diffuse themselves over the environs.

Our first care should be a comparison of the differences existing between the more salubrious parts of the large and least healthy towns and those particular districts which are least so. We should then find the actual amount of departure from the general laws of climate applying to the surrounding country, and ascertain with certainty the particular localities within the city which give rise to the disturbing influences. This comparison has not yet been made, nor can it be, excepting by previously organised arrangement.

I will, therefore, proceed to compare briefly the meteorological phenomena of London with simultaneous phenomena at the places already mentioned, and which are Worcester, Liverpool, Dunino and Arbroath

The following are the positions of these places:-

Names of Places.	Latitude.	Longitude.		Names of the Observers.
London Worcester - Liverpool - Dunino Arbroath	$5{ }^{\circ} \quad 29$ 5215 5325 5616 5634		$\begin{array}{r} 125 \\ 37 \\ 309 \\ 50 \end{array} .$	Various. James D. Baldey, Esq., C.E. John Hartnup, Esq., F.R.A.S. David Tennant, Esq., M.B.M.S. Alexander Brown, Esq.

The following are the results of this investigation:-

80

 sentatives of the
of $\frac{1}{4}$ of an inch.

81

From the numbers in this Table it will be secn that London day temperature was below that in Worcester gencrally;
, greatest difference occurred in the week ending September 10 ; it was in the week ending, July 29 to $9 \frac{10}{}{ }^{\circ}$, but in the following week
The excesses above the stations in Scotland were from 3° to 10°.
82

$\begin{gathered} \text { NANE } \\ \text { or } \\ \text { STATIONa } \end{gathered}$	Whami Ending																				
	Jumx.				nuabsi.				Stertmand					Ocronmi				Notempin			
	8	15	22	${ }^{20}$	\checkmark	${ }^{12}$	19	${ }^{26}$	2	9	10	${ }^{23}$	${ }^{30}$	7	${ }^{14}$	21	28	1	11	18	${ }^{25}$
London Worcestcr - Liverpool * Dunino * Arbronth -	$\left\|\begin{array}{c} \circ \\ 51 \cdot 5 \\ . . \\ 5 \cdot 4 \\ . .4 \\ . \\ 40 \cdot 1 \end{array}\right\|$	$\begin{gathered} 0 \\ 50 \cdot 0 \\ . . \\ 51 \cdot 4 \\ . . \\ 40 \cdot 0 \end{gathered}$	$\begin{gathered} 0 \\ 52 \cdot 8 \\ . . \\ 55 \cdot 8 \\ . . \\ 50 \cdot 7 \end{gathered}$	$\left.\begin{array}{\|c\|} \circ \\ 05 \cdot 0 \\ . . \\ . \\ 50 \cdot 0 \\ . . \\ 46 \cdot 0 \end{array} \right\rvert\,$	$\begin{gathered} \circ \\ 54 \cdot 0 \\ . . \\ 50 \cdot 8 \\ 40 \cdot 0 \\ 50 \cdot 3 \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ 53 \cdot 2 \\ . . \\ 57 \cdot 0 \\ 53 \cdot 7 \\ 50 \cdot 1 \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline \circ \\ 50 \cdot 5 \\ . . \\ { }_{50} \cdot 3 \\ 4 \cdot 3 \\ 40 \cdot 9 \\ 45 \cdot 9 \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 0 \\ 52 \cdot 3 \\ . . \\ 55 \cdot 8 \\ 51 \cdot 3 \\ 48 \cdot 0 \end{array}$	$\begin{gathered} 0 \\ 54 \cdot 5 \\ . . \\ 55 \cdot 0 \\ 55 \cdot 0 \\ 53 \cdot 0 \\ 4 \cdot 0 \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ { }_{48}^{8} \cdot 5 \\ 48 \cdot 3 \\ 48 \cdot 2 \\ 57 \\ 53 \cdot 1 \\ 48 \cdot 1 \\ \hline 4 \end{array}$	$\left\|\begin{array}{c} 0 \\ 51 \cdot 9 \\ 50 \cdot 4 \\ 55 \cdot 4 \\ 40 \cdot 4 \\ 47 \cdot 0 \end{array}\right\|$	$\begin{array}{\|c\|} \hline \circ \\ 50 \cdot 7 \\ 40 \cdot 1 \\ 54 \cdot 5 \\ 45 \cdot 3 \\ 44 \cdot 4 \\ \hline 45 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 44 \cdot 0 \\ 405 \\ 51 \cdot 4 \\ 46 \cdot 7 \\ 41 \cdot 0 \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 10 \cdot 41 \\ 41 \cdot 3 \\ 51 \cdot 3 \\ 12 \cdot 0 \\ 40 \cdot 0 \\ \hline 10 \cdot 3 \\ \hline \end{array}$	$\begin{gathered} \circ \\ 41 \cdot 8 \\ 30 \cdot 9 \\ 47 \cdot 8 \\ 40 \cdot 6 \\ 38 \cdot 1 \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ 41 \cdot 5 \\ 3 \cdot 0 \\ 30 \cdot 0 \\ 46 \cdot 3 \\ 39 \cdot 6 \\ 38 \cdot 7 \\ \hline \end{array}$	0 $35 \cdot 6$ $35 \cdot 3$ $42 \cdot 4$ $34 \cdot 4$ $30 \cdot 6$	$\begin{gathered} \circ \\ 42 \cdot 6 \\ 42 \cdot 4 \\ 42 \cdot 0 \\ 47 \\ 41 \cdot 0 \\ 40 \cdot 4 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \circ \\ 30 \cdot 2 \\ 32 \cdot 8 \\ 4 \cdot 1 \\ 4 \cdot 1 \\ 30 \cdot 8 \\ \hline 34 \cdot 7 \\ \hline \end{array}$	\circ $30 \cdot 5$ $35 \cdot 2$ $40 \cdot 1$ $36 \cdot 7$ $37 \cdot 3$	\circ $33 \cdot 6$ $35 \cdot 9$ $35 \cdot 8$ $33 \cdot 0$ $30 \cdot 6$

From the numbers in this Table it till be seen that the night temperatures of London were from 1° to 5° higher than
From the numbers in this Table it will be seen that the night temperatures of 1° to 9° above those in Scotland,
those of Worcester; from 2° to 9° below those of Liverpoel; and were usually from ${ }^{\text {a }}$.

$\begin{gathered} \text { Naniz } \\ \text { or } \\ \text { oratrox. } \end{gathered}$	Weiric ending																				
	Junr				august				Sertember					Ocrobrr				Notembrir			
	8	15	22	${ }^{20}$	5	12	19	${ }_{2} 6$	2	${ }^{9}$	16	${ }^{23}$	30	7	14	21	${ }^{28}$	${ }^{4}$	11	18	${ }^{25}$
London -	$\begin{gathered} \circ \\ 10 \cdot 0 \end{gathered}$	$15 \cdot 5$	${ }_{23 \cdot 1}^{0}$	241	${ }_{13} \cdot 7$	${ }_{16}^{\circ} \cdot 8$	$\begin{array}{r} \circ \\ { }_{21} \cdot 0 \end{array}$	$20^{\circ} 2$	$\begin{gathered} \circ \\ 23 \cdot 1 \end{gathered}$	${ }_{2417}^{0}$	$\begin{gathered} \circ \\ 18 \cdot 4 \end{gathered}$	$\stackrel{\circ}{10 \cdot 1}$	$21 \cdot 6$	$10 \cdot 4$	${ }_{15 \cdot 4}^{\circ}$	${ }^{\circ} \mathrm{O}$	- ${ }_{\text {14 }}$	$\stackrel{\circ}{15}$	${ }_{13}{ }^{\circ}$	${ }^{\circ} 1$	${ }_{\text {¢ }} \times$
Worcestor	$27 \cdot 6$	24.5	$10^{\circ} 3$	$29 \cdot 3$	$21 \cdot 2$	$22 \cdot 7$	$15^{\circ} 0$	$17 \cdot 8$	15°	$18 \cdot 7$	$12 \cdot 5$	9.5
Liverrool	$0 \cdot 7$	8.8	${ }^{13} \cdot 6$	$13 \cdot 7$	11'4	$10 \cdot 8$	$9 \cdot 7$	$10 \cdot 2$	14.1	$13 \cdot 2$	$13 \cdot 2$	$9 \cdot 1$	11.6	$8 \cdot 2$	${ }^{11} 3$	$0 \cdot 4$	$9 \cdot 1$	8.3	$7 \cdot 6$	$7 \cdot 1$	$7 \cdot 2$
Dunino -	$11 \cdot 4$	$14 \cdot 2$	18.8	14* 4	$10^{\circ} 0$	$15^{\circ} 0$	$15 \cdot 3$	$13 \cdot 8$	$13 \cdot 4$	$12 \cdot 1$	157	$0 \cdot 4$	10.5	$11 \cdot 5$	$11 \cdot 4$	$8 \cdot 3$	10°
Arbroath	$17 \cdot 0$	18.0	$18 \cdot 9$	$22 \cdot 8$	15'3	18'3	$21 \cdot 8$	10^{6}	$20 \cdot 5$	$19 \cdot 2$	10×3	$10 \cdot 6$	17•4	$15 \cdot 1$	1773	113	$10^{\circ} 5$	$12 \cdot 5$	117	$8 \cdot 1$	8.8

84
Tabile Xlviti，－Whenix Mmans of Tmapmaturb of Air．
From these results it would appear that London was warmer than Worcester in every week，excepting in those
ending September 16 and November 25 ，but the excesses were sman；that 4 and 11 ；the excesses were the greatest till
week excepting those ending September 9，octorer 2 ；in the nine weeks ending this day，the average excess was $3 \frac{1}{2}^{\circ}$ ；and these results also show that London The following Tables give the hygrometrical results for the sime stations．Table XLIX．contains the weekly means of the temperature of the Dew Point；Cable L．those of the weight of vapour
degrec of humidity，the state of complete sitturation being represented by 100 ．

86

From the numbers in these Tables it appears that the amount of water in the air has been nearly evenly distributed. The From the numbers in these Tables appeading September 2, and was larger than at the other stations in this
largest amount in London was in the week endill

The Wind.
The direction of the wind at the different stations was chiefly S.W.; its estimated strengeth was nearly the same at the different stations. Its velocity at Liverpool is shown in the fullowing Table:-

Table LIII.-Average daily Honizontal Motion of the Air at Liverpool Observatory.

Year.	January.	February.	March.	April.	Mray.	Junc.
	miles.	miles.	miles.	miles.	miles.	miles.
$\mathbf{1 S 5 2}$	$460 \cdot 0$	$445 \cdot 6$	$216 \cdot 8$	$292 \cdot 4$	$302 \cdot 0$	$325 \cdot 5$
1853	366.3	$258 \cdot 2$	$247 \cdot 7$	$408 \cdot 6$	$271 \cdot 0$	$233 \cdot 1$
1854	$365 \cdot 0$	$460 \cdot 7$	$334 \cdot 5$	$307 \cdot 6$	$253 \cdot 3$	$302 \cdot 3$

Year.	July.	Augast.	September:	October.	Norember	December.
	miles.	miles.	miles.	miles.	miles.	miles.
1852	$250 \cdot 6$	2:55-3	$269 \cdot 2$	2\%8.2	$303 \cdot 2$	$421 \cdot 5$
1853	$365 \cdot 5$	$256 \cdot 3$	$302 \cdot 0$	$280 \cdot 2$	$236 \cdot 0$	$229 \cdot 6$
1854	$248 \cdot 1$	$275 \cdot 4$	$306 \cdot 1$	317•3	$332 \cdot 7$	

These numbers do not agree with those for London in Table XXXIV.; and we draw from them the fact that there has been no deficiency in the velocity of the air at Liverpool, although in London the motion was less than one-haif its average.

$\stackrel{0}{i n}_{0}^{0}$
TABLE LIV.-Showing the Whenly Amouxt of Ozone at the different Stations.

By comparison with the numbers in Table XXXVIII．，showing the weekly amount of ozone at the several Metropolitan stations，with the numbers in this Table，it will be seen that in London there was a great deficiency of ozone at all stations，even at Highgate and Bexley Heath，as compared with stations of the same elevation in the country．
In both Tables the amount of ozone is shown to be the smallest at the latter end of August and the beginning of September．
At all times the amount of ozone was the greatest at places of the highest elevation，as at Hartwell and Hawarden，and at stations situated near the sea．
By diviaing the numbers into two groups，of inland and sea－side stations，and taking the means of the numbers in each group，we find that at the latter stations，at an elevation of 85 feet，the mean amount of ozone was $2 \cdot 2$ ，and at the inland stations，at an elevation of 85 feet， it was 0.6 ；of 170 feet was $1 \cdot 3$ ，and of 255 feet was 3.8 ．These it was $0 \cdot 6$ ；of 170 feet was the law indicated by the Metropolitan numbers，thereore，conservations，of the amount of ozone being graduated by the degree of elevation．

Progress of the Cholera in the Metropolitan Districts in the Year 1853.
The first death in London from Cholera，in the year 1853，took place on July 7；and the progress of the disease is shown in the following Table．

TABLE LV．－Showing the Number of Deaths in the Metropolis from
Cholera and Diarriga，on each Day from July 1 to December 31,1853 ， inclusive．
（Compiled for the Board of Health from the Registers of Deaths in the General Register Office）．

1853. Day of the Month．	July．			August．		September．				October．			November．			December．		
												$\begin{aligned} & \text { E. } \\ & \text { E. } \\ & \text { ह゙̈ } \end{aligned}$				$\begin{aligned} & \text { 产 } \\ & \text { 号 } \\ & \hline \end{aligned}$		
1	0		6	0		20	1	，	21		11	14		5	$\begin{array}{r}10 \\ 5 \\ \hline\end{array}$	0 4		
2	0		7	1		21		4	23		$\begin{array}{r}9 \\ 10 \\ \hline\end{array}$	14		12	7 7	2		
3	0		8	0		13		5	24		10 7	13 10		22	22	1		，
4	0		9	1		$\stackrel{23}{18}$		2	20 31		7	13		7	3	4		3
5	0		7	1		18		0	11		6	11		15	10	1		6
6	0		9	4		25 30		1	11 16		－ 12	9		13	15	4		7
7	1		2	7		30		O	16 16		7	7		16	11	1		8
8	0		5	$\stackrel{2}{2}$		$\stackrel{22}{27}$		2	16		10	8		12	2	4		4
9	0		10	$\stackrel{2}{2}$		27 22 22		0	16 23		10 3	7		19		0		4
10	0		10 9	2		22 29		1 3 3	16 6 6		3 7	7		15	9	0		5
11	1		$\begin{array}{r}9 \\ 10 \\ \hline\end{array}$	2		$\stackrel{29}{25}$		3 3	14		7	8		11	4 8 8	$\stackrel{2}{0}$		9 9
12	0		10	5		38		2	10		9	12		10	9	0		9 6
14	0		12	2		21		4	15		3			12 9	9 4 4	1		6 3
15	1		14	1		24		4	8		$\begin{array}{r}8 \\ 14 \\ \hline\end{array}$	10	1 9	4	9	0		7
16			16	0		19		3	11		14		9 1 1	10	3	3		3
17			14		1	$\begin{array}{r}26 \\ 29 \\ \hline 2\end{array}$		6 1	17		14 16	11	1	11	10	2		4
18			15		1	22 20		5	17		16 7			9	4	$\stackrel{2}{1}$		1
19			18		1	20 27		$\stackrel{5}{5}$	13		13		1	10	4	1		7
$\stackrel{20}{9}$			12		5	27 31 31		5 7	16		13 9		6	5	3	1 0		${ }_{5}$
$\stackrel{21}{22}$			10 9		3	31 20		1			22		10	6	10	0		5 4 4
$\stackrel{22}{23}$			$\stackrel{9}{16}$		2	16		3			14		7	6 4 4	11 4 4	1		4 7
24			10		3	19		$\stackrel{2}{2}$		4			5 9	4	4 4 4	－		10
25		1	17		3	14		8			$\begin{array}{r}6 \\ 14 \\ \hline\end{array}$		10	4	5		1	4
26		1	15		5 3 3	16 21		${ }_{11}^{9}$		13	14		12	2	8		4	6
$\stackrel{27}{9}$		2	$\underline{22} 12$		2	21 20		1		18	14		6	2	8		1	8
28 29		$\stackrel{2}{1}$	12 19		$\stackrel{2}{2}$	${ }^{25}$		6		12	14		5	4			0	9
30		0	18		2	28		8		9	11		8	4			0	7 9
31		2	18		1	25												
Sums		1	380		67	723		111		54	335		83	288	218		3	187

Atmospheric Phenomena in the Year 1853.
The pressure of the atmosphere was nearly that of its average in the months of March，April，August，and September，and，with the he motion of that of November，was below it in the remaining months． The first quarter of the year was subjected to extremes of heat and cold．The spring and summer were cold；and the weather，wisettled． exception of the first half of August，was almost a way hazy．The The autumn was cloudy；the atmosphere was thick and hazy．The winter was cold The motion of the air was less ess．The monthly fall of rain for the year was $4 \frac{1}{2}$ inches in excess． 1853 are given means of the meteorologica

92

		会号	$\stackrel{\rightharpoonup}{\dot{m}}$
			咢
			寝号
$\begin{aligned} & \text { 另 } \\ & \text { A } \\ & \text { 会 } \end{aligned}$			$\begin{aligned} & 10 \\ & 0 \\ & + \end{aligned}$
	急台总		$\stackrel{\circ}{\dot{i}}$
			$\stackrel{\stackrel{8}{7}}{ }$
		成荷	－
			$\stackrel{+}{1}$
			－
			僉
			¢

94

Progress of the Cholera in the The First Death from Cholera took place on January 8 in the Year is shown in
table LVII.-Showing the Nunber of Deaths in the Metropolis (Compiled for the Board of Health, from the

95

Metropolitan Districts in the year 1854.
year 1854, and the Daily Progress of the Disease throughout the the following Table:-
from Cholera and Diarrhea, on each day throughout the year 1854.
Register of Deaths in the General Register Office.)

July.		August.		Septeniber.		October.		November.		Decemiber.		
											\%	
				389	41	70	13	1	9			
0	6	72	31			61	17	2	11			5
0	7	74	27	459	36	61	13	4	4			
0	8	78	28	329	49	76	13	4	7			
0	8	78	29	305	38	53	20	11	7			
1	12	101	26	267	47	60	16	3	11			2
0	7	104	34	259	47	41	26	4	6			6
1	9	78	28	235	35	37	15	2	7			3
2	8	107	34	215	34	47	21					2
1	6	107 96	25	259	39	37	24					5
0	10	83	31	256	29	38	19					5
0	10	${ }^{83}$	49	233	52	29	11				-	0
0	10	105	49	233 246	52 36	17	18				0	3
2	8	98	36 3	246 203	36 45	17 24	18				0	8
1	10	108	33	203	45 30	24 35	11				0	2
1	4	116	32	158	30 30	35 32	11				0	5
1	11	90	31	208	30	32	17				0	4
4	10	115	33	223	30	19	13				0	5
2	11	125	26	190	29	26	14				0	5
3	16	97	36	179	21	18	21				0	3
7	8	121	24	208	36	25	18				0	5
5	13	118	39	167	25	s	10		2		0	5
6	9	131	28	142	29	15	10		1	2	0	6
6	12	131	39	159	26	13	11		0	3	2	3
17	13	131	33	137	30	5		0	2	3	0	5
16	17	140	41	129	28	12		9	0	s	0	2
24	24	118	29	104	30	3		2	0	5	0	1
20	15	100	36	106	26	4		9	0	8	0	
23	11	122	26	90	20	6		0	1	3	0	
27	25	144	41	88	25	5		7	1	3	0	
53	17	137	38	75	20	4		6	1	5	0	
41	26	187	29	66		3		8	0	4	0	
41 44	20	211	40								0	
308	371	3,513	1,022	2 6,084	990	823		26	52	75	5	113

Atmospheric Phenomena in relation to Cholera in the Metropolitan Districts in the Year 1854.
Having discussed the different meteorological conditions weekly which prevailed during the continuance of Cholera in the Metropolis, it is necessary to trace the progress of the disease wcekly in connexion with the meteorology of the period.
From the beginning of the year till the week ending July 8, the mortality from diarrhoia averaged 35 weekly; till this time 21 deaths only had been caused by Cholera, and these were scattered over the 27 weeks from January 1. In the week ending July 15 six cases of death from Cholera and 59 from diarrhœa were registered The weekly progress of the disease was subsequently as follows:-

TABLE LVIII.--Showing the Number of Deaths in the Metropolis from Cholera and Diarbhea, in each week from July 1 to the end of the Year 1854.

It is desirable to trace the progress of these numbers with each section separately.

The pressure of the atmosphere, as shown in Table IV,, was in excess in the months of February, March, April ; in defect in May and June; and slightly in excess in July. The reading of the barometer became remarkable towards the end of August, and the pressure ans more continuously great during the worst period of the disease tnan at any other time. On reference to Table III. and the notes which follow, it will be seen that the barometer reading was as high as $30 \frac{1}{2}$ inches on three different days between August 25 and September 10 , and that it exceeded 30 inches during the whole of this period. The reading began to decrease on the 11 th, when the disease also began to decline.
The readings declined below 30 inches on the 14th, and continued with but slight variations from 30 inches till after the 20th. The mortality from cholera in the week ending September 16, was 342 less than in the preceding week. On September 22 the reading attained $30 \cdot 4$ inches nearly, and was high till the end of the month. The decrease in the mortality in the week ending September 23 was 345, but was greater in the week ending September 30, the decrease being as large as 524 , notwithstanding the still high reading of the brometer. After this time the rate of decline steadily continued till the end of October, after which a few scattered cases only occurred till the end of the year. The reading of the barometer decreased to $29 \cdot 37$ inches by October 5 , and increased to 30.6 by the 13th; declined to $29 \cdot 3$ inches by the 18th; after this time the variations of reading were frequent, and at times large in amount. 'The reading in November was that of the average, but was below it in December.

Temperature of the Air.

Table IX., with following remarks, shows the temperature of each month in the year 1854, and its departure from the average. From January 1 to April 21, with the exception of 16 days, viz., January 1 to January 6, and February 10 to February 19, the mean daily temperature of the air was in excess. The average daily excess of the 101 days ending April 21 was $3 \cdot 4^{\circ}$; on April 22 a very cold period set in, injuring vegetation and killing many hardy plants, and from this time to July 19, a period of 97 days, the average daily defect of temperature was $3 \cdot 3^{\circ}$. In Table VIII. the departures of temperature each week, from July 8, at the central Metropolitan stations, are given. During the first two weeks the temperature was between 4 and 5 degrees below the average, but on Tuly 20 it rose above, and on the 25 th was 11° in excess; the temperature of the air on this day rose to 90° nearly, and was the hottest in the year. The mean weekly temperature in the 3 weeks ending August 19 was in defect. From August 19 till October 11 the temperature was in excess, averaging for these 54 days $2 \cdot 6^{\circ}$ daily. The greatest excesses were in the week ending September 2, when the average amount for the Metropolitan districts was $6 \frac{1}{4}^{\circ}$; the number of deaths from Cholera this week were 1,646 ,
and increased to the maximum 1,869 in the following week, the temperature being in excess, varying from 1° at elevated places to 5° perature bef low elevation; in the next week, ending September 16, at-places of the temperature was in excess, ality from Cholera declined to 227. ending October 14; and this time, with the exception of the week The temperature after this to its average till December
ending November 4, was below its average till Decent at those places
During the epidemic the mortality was greatest ature was the where the temperature was highest. The temperaty 29 , when the highest in the year, excepting in the week ending Jue
mortality was approaching its height, viz., in the week ending September 2.

Maximum Temperature by Day.

Table X. contains the mean weekly highest temperature by day. The maximum for the year, viz., $79 \cdot 1^{\circ}$, occurred in the last week in July. The mean of the highest temperature by day in the Metropolitan districts, in the month of July, was $72 \cdot 2^{\circ}$; in August was 705°; and in September 71°; showwa but little rariation in this element in the period of 3 months. It was higher, however, in September than in August. In the It was higher, however, in September was at its height, the day week ending September 2 , when Chole highest in the year (excepting temperature averaged $73 \cdot 5^{\circ}$, being the highest inture, however, in the only the last week in July). The day temp to 70°, and afterwards fatal week ending September 9 descended declined week by week to $60 .{ }^{\circ}$

The greatest difference between the maximum day temperature of The greatest difference ${ }^{\circ}$, took place between the weeks ending Consecur 14 and October 21

The maximum temperature somewhat follows the course of the disease. The little difference, however, shown in Table XI, between the high day temperatures recorded at both high and low stations is not sufficient to account for the different rate of mortality existing at each.

Minimum Tempcrature by Night.

Table XII. gives my collected information upon the night temTable XII. gives my collected night temperature took place s perature of London. The highest night temperature and averaged in the weeks ending July 29 and September 2, at and outabout 51° in July and August, and 46° in September, ate $55^{\circ}, 56^{\circ}$, lying stations; whilst at the central stations they were 55,56 , and 51° in those months respectively. The excess of night temperature of London is shown in Table XIII. In the several weeks perature of Lugust 26 the excess varied from 1° to 4°; but in the week ending September 2 it was as large as 8°, and in the following ending September 2 it was as large ass decreased to $4 \frac{12^{\circ}}{}$ and to Week amounted to 7° nearly; the excess decre the night tempera3° in the two following weeks. The excess of the nig disease was ture of London was therefore the greatest when the disease declined to approaching its height, and decreased as the disease declined to ${ }_{2} 2^{\circ}$ approach the week ending October 21, being about the same amount
as existed before the epidemic broke out. I have no doubt that the excess of night temperature exercised an influence in the progress of the epidemic.

Diurnal Range.

Table XVI. and remarks following give a great deal of information upon the range of temperature and the weather generally during the progress of the epidemic, and for some time after. Table XVII shows that the daily range has exceeded the average Table X month of the year excepting June. Table XV. shows in every month of the year excepting June. Table XV. Shows the less daily range at the Metropolitan stations than that due to their geographical position; the weeks distinguished by the greatest departures were those ending September 2 and 9 . In the results following Table XVI. the periods most distinguished by large defects of daily range were from August 26 to September 11, large during which time the disease attained its height, and arain in the during which time the disease attained its 4. The less daily range at calm period from September 26 to October 4. The less daily range at stations of low elevation seems to have exercised an important influence in the progress of the epidemic.

Thames Water and its Temperature.

The waters of the Thames, as first collected in Gloucestershire, re pure, and continue nearly so until they reach Richmond, when they become tainted with every description of impurity, the river as it passes through London being made the recipient of all the sewers and waterclosets of the Metropolis; much of this matter is precipitated in contact with the mud of the river, but much also remains in solution. From this water, therefore, it is not to be expected that pure vapour of water can arise; it is, in fact, tainted with all the refuse matters dissolved in it.
To this great cause of malaria is to be added the wide extent of undrained marsh land which lies to the east of the Metropolis. The heat of the summer acting upon the sodden and decayed vegetation scattered over its surface gives rise to the most pestilential vapours and exhalations; these are in a measure contained within the precincts of the Metropolis, London being bounded on the north, south, and west by hills, which on its northern boundary exceed 420 feet.
To return to temperature. I made a series of experiments on the "Radiation of Heat at Night from the Surface of the Earth," (published in the Philosophical Transactions, part 11, 1847,) and found the temperature of exposed surfaces to be dependent upon the variation of the soil, its vicinity to other soils, its elevation, exposure, difference of level, \&c. The temperature of grass, for instance, adjacent to oravel I found to be frequently much lower, so as often to be below the temperature of the dew point, whilst the gravel號 the same time was above by mong generate volumes of mist and the marsh lands to the east of London goutron their volume and vapour dependent upon temperature, but fron as they are with iñtensity are less easily dispersed, surcharged as they ane in organic matter, and the effluvia of animal and vegetable matter in
derive accession from the refuse cast all stages of decay, and which derive accession from the refuse cast upon the banks of the river, and left by with the atmosphere, and in mud. The rapours thus generated mix stratum, subjecting the inhabicalm weather are retained in its lower strand to their poisonous influence.
tinnts within and around ther upon the Thames water, in* tainting
The effect of temperature upon the Thames water, in tainting the surrounding air, is exhibited in the well-known fare the and summer cholera become prevalent after the temperas the water Thames has attained to 60°, and from the abo do diseases
declines from this temperature, so also dowing remarks, it will be seen
By reference to Table XIX. and following remarks, it will June 22, that the temperature of the Thames attamed 26 ; that the tempeand descended below this reading on Se end of July, fell to 62° at rature of the water was 70° towarined a second maximum of 66° at the beginning of August, an
the beginning of September.
Here then, according to the above reasoning, is a cause for the prevalence of disease in general, if not of Cholera, during the period prevalence of disease in generrity of which was greatly heightened under review; the insalubrity of weather at the time being close and sultry, and distinguished everywhere by a continued prevalence of mist and haze. During periods of clear calm weather in the Metropolis, that is, when the Londoner sees the sky really blue, and at night when he sees the stars shine brightly, or when the air is in gentle motion, the the stars from the city and river ascend high into the atmosphere, become generally diffused, and escape observation; but during periods become generally difused, and particularly during calms and the cold of cloudy, misty weather, and particulang of condensed into haze, mist, or air of nights, the rapour in ascending is condensed into fog, and kept in
lowest districts.

The greater the difference in relation to the temperatures of the The greater the more dense will be the mist or fog. Table XX. air and water, the more anse exhibits in some instances an excess of gives these differences, and exhibits that of the air. In the remarks 20° temperature of the Thames orer that of the air. In then 28 nights ending Septemfollowing this Table, it will be seen that fo
ber 12 the average excess exceeded By reference to the wind sections for this period, it was, therefore, that the air was calm both dy charged with the accumulated vapours for this long time, and fatally charged with the accumulated vapours the three weeks when the was their infiuence manifested during the three weeks when the
disease was at its worst, and destroyed 5,834 of the Metropolitan population.
population. \quad No reasonable doubt can henceforth be entertained as to the pernicious effect of the London fogs during the summer heats, nor of nicious power, under any favourable combination of unusual heat or general stagnation of the air, to fan into flame the dormant sparks of an epidemic never thorouglly extinguished since its first introduction to English soil.

Wind.

The first strong wind in the year was on January 3, when from the E.N.E. there were pressures to 4 and 5 lbs . on a square foot of surface. On January 25 the wind blew strongly for a short time from the south, and on the 26 th from the S.W. In February, from the 4th to the 9th, the wind blew almost continuously from the west and S.W., with pressures from 3 to 5 lbs ; on the 9 th a pressure of 12 lbs. was recorded. The next strong wind was on February 17 from S.W. and W., with pressures varying from 5 to 12 lbs ; and on the 18 th and 19 th from the N.W., with pressures from 5 lbs . to on the 18th and 19th from the N. 10 . lbs . On February 23, 24, and 25 10 lbs ., and in one instance to 18 lbs . On frome 3 lbs. from the S. , S.W., and there were pressures of 3 lbs. and 4 lbs. from the S., 5 . W., and N.N.W.; from March 8 to 11 there were occasional pressures of 3 lbs . from S.W. The next strong wind of any duration was on April 22 and 23 from the N.E., when there were pressures to 5 lbs . and 6 lbs. On April 28 there were pressures to 5 lbs . from the N. ; on April 30 there were occasional pressures to 4 lbs. from the S.W. On May 2 here were pressures to 6 lbs . from the S.W. On May 7 and 8 the wind blew strongly from W.S.W., and pressures to 8 lbs and 10 lbs . were recorded. On June 2 and 3 the wind blew for some time with pressures to 4 lbs . and 5 lbs. from the N.E. On June 10 and 11 the wind blew from the S.W. with pressures to 4 lbs . and 5 lbs . On June 26 there were pressures from the W.S.W. for some hours to 4 lbs . Up, therefore, to the end of June there had been instances of strong wind, though somewhat fewer than usual. Up to this time few deaths from Cholera had occurred, and those were scattered from the commencement of the year. In July there were no strong winds, and 16 days were noticed as nearly or quite calm. In the second week of the month 5 cases of Cholera were reported; in the week ending July 22 the numbers increased to 26 , and subsequently to 133 in the last week; whilst the deaths from diarrhoea increased from 27 to 84. In August, by reference to Table XXXV., it will be seen that 6 out of the first 10 days were designated as calm. By the week ending August 12 the number of deaths had increased to no less than 64 On August 11 the air moved more freely from the less than 644. On August 11 S. S . W.S.W., and on the 12 th from the S. and S.W. We 10 in 13 ir to the 18th, portions of each day were calm; from the 19 the the air was in gentle motion till the 23d; and on the 24th there were pressures to 2 lbs. and 3 lbs . for a few hours from the W.S.W. At intervals, when the air was somewhat less stagnant, the rate of increase in the disease was checked, dating from August 12. In the weeks ending August 26 the number of deaths from Cholera was 847. From August 25 to September 11 the air was still, and a dead calm prevailed at all low places. This was the calmest period in the year, and the disease was at its height. The number of deaths from Cholera in the week ending September 9 amounted to 1,869, and from diarmoa to 289 . By reference to the remarks following Table XXX. it will be seen that from July 1 to Scptember 11 the direction of the wind was alternately from S.W. and N.E., and for an equal number of days; but on those days in which it was passing from the latter

* See the Registrar-General's Report upon Cholera in England in 1848 and 1849.
point it was mostly in gentle motion only. On September 12 the wind blew for a couple of hours with a pressure of 2 lbs. on the square foot, and the air became in motion cven in places situated near the alluvial of the Thames. Shortly after the disease began to decline. From September 3 to September 20 the wind blew every day with velocity for some time, and the disease declined rapidly. On September 24 the wind blew strongly for some hours, with pressures varying from 5 lbs . to 7 lbs . on the square foot. This was followed by a calm, extending to October 2; the disease, nevertheless, continued to decline. On October 5 the wind blew for a few hours from the S.W., with a pressure of 3 lbs . During the month of Octaber the wind occasionally passed with some velocity; still there were 12 days partially calm; the disease declined to 25 in the week ending the 4th of November.
In the remarks following Table XXXV. it is shown that out of the 123 days from July 1 to the end of October a calm more or less prevailed on 65 days, which is more than one half of the entire number. After November 16 there was no day on which the air was calm; a few fatal cases of Cholera, however, continued to occur.
By reference to Table XXXVI. and following remarks, it will be seen, that the air was at all times in much less motion at places situated on the alluvial of the river Thames, than where situated on higher ground. In connexion with the progress of the disease, we perceive that at such places the epidemic has been more severe, committing its greatest ravages at Lambeth, Walworth, Bermondsey, Rotherhithe, Deptford, Poplar, \&c. At these places and at others similarly circumstanced, the air was stagnant during the period between August 25 and September 11, and was, besides, stagnant on all the 65 days noted as calm, between July 1 and September 11, at the more elevated and healthy stations.

Humidity of the Atmosphere.

Tables XXI. to XXIX. give all the information I have been able to collect upon the humidity of the air: from the observations contained in them, it appears that there was one-twentieth part less water in the air than the average for these months; and in Table XXIX., showing the weight of a cubic foot of air, it would seem that the air was more dense than usual, as the mean weight of a cubic foot of air was 2 grains above the average.

Thunder Storms.

There were but few thunder storms from July to the end of the ear. The following are all the instances of electrical disturbances year. The July 9,30 , and August 3 ; thunder heard on July 4, 10, 31 , August $2,3,17$, and 19; and lightning seen on July 24, 25, and August 28. There was no instance of thunder or lightning about the Metropolis during the months of September, October, November, and December ; in fact, no oreat electrical disturbance took place from the time of the first outbreak of Cholera in July, and during the continuance of
the disease. Hail was noted on one day only within the same interval of time, viz. on October 23.

So far, therefore, as the electrical observations indicate, in consion with the much less than the usual number of electrical disturbances, it would seem that there has been a general deficiency in the tension of the common positive electricity prevalent during the period.

Electricity of the Atmosphere.

Table XXXVII. and remarks following contain all my collected information upon the electricity of the atmosphere during the prevalence of Cholera. No observations were made till the disease was at its height; at this time the electricity was positive but weak, and continued so till the end of September. Positive electricity was generally present, with tension somewhat greater than in September, indeed, always, except when rain was falling, in the months of October, November, and December, at stations of moderate elevation. Common atmospheric positive electricity has theiefore been as prevalent as usual.
At stations situated nearly on a level with the river Thames, the electricity was generally weaker than at stations of higher elevation, and was more frequently negative.
I much regret that the electrometer observations began too late to afford any decided results. They would, however, seem to show that a deficiency of electricity prevailed during the time when the disease was at its height, and that at low stations, as compared with the higher, a deficiency was likewise to be observed.

Ozone.

By reference to Table XXXVIII. and the remarks following, it Bil be seen that no ozone was detected at any station near the river excepting at Battersea and Millbank, where a little was recorded, but at stations of high elevation it was of general occurrence. This may be accounted for by the great amount of organic matter in the atmosphere in low districts, especially in those situated on a level with the Thames. These stations are also distinguished by a stagnancy of the atmosphere, and it remains to be proved whether the total defect of ozone at all the river-side stations is caused by the presence of large quantities of organic matter, decomposed by ozone, itself being simultaneously destroyed; or whether it is owing to the small amount of ozone contained in a small volume of air, which, to obtain a perceptible elimination of iodine, should pass the test papers in lareer quantities; the latter supposition, howerer, is not supported by the observations taken at places where ozone as a during the day than during the calm hours of the night.
Upon this subject Dr. Moffatt, in a recent letter addressed to me,
says:- With regard to the absence of ozone in low places, and places " where the air is stagnant, I must say that my opinion on this point
«s still oscillates, and I am as undecided to-day respecting its absence "c under these conditions as I was five years ago. There is no doubt " that a test paper is much sooner tinged in a current of ozoniferous s: air, then it is in a calm of the same air; the reason of this is obvious " enough. Ozone, however, is often detected during calms; so it "c cannot be owing to the want of currents of air above. The only c: time when calms give anything like the amount of colouration pro-
ss duced by a strong south or south-west current, is when they are
" duced by a strong south or south-west current,
"accompanied by continued falls of snow. During such falls I "a accompanied by continued falls of snow. During such falls I
c: have seen both Schonbein's and my own papers coloured as high as " 10 ; this I have attributed to the snow flakes bringing down the
©: ozone from the cirriferous and ozoniferous regions of the atmo"s sphere. Often during calms cirri are observed hovering in the " higher strata, and then there is no ozone; but when the cirri cs come down to the earth's surface in the shape of snow, they bring s: the ozoniferous air with them. Again at these times a calm may " prevail, and ozone will be detected without a fall of snow; but " when this is the case, the cirri will be seen moving from S. or "S.W. to N. cr N.E., and the ozone in the calm merely precedes "s the setting in of a south current, if the barometer reading is " decreasing, and a thaw will soon commence, or if a north current " of the reading increases, in which case the fresh will continue.
"So much for the cause of the absence and presence of ozone "during proper calms; I will now speak of the absence of ozone $:$ in stagnant air. I must first say that I hare not the least doubt ": that if snow fell in considerable quantity during any calm, that is
© to say, if the upper strata of air came to the earth's surface, ozone " would be always detected. The want of ozone in stagnant air "" may be accounted for in this way. Ozone is no doubt absorbed " by surrounding objects, or dissipated in some way or other by local " influences; and if the supply, either laterally by current, or from "a above by downward motion, be not so rapid as the absorption or "d dissipation, it must be in smaller quantities in places where atmo" spheric currents slowly penetrate, than in localities freely exposed; " or it may not be in appreciable quantities. I am inclined to "s believe that fresh and new surfaces destroy ozone. I have "observed that test papers have remained for weeks in a new ozone " test box, without colouration, which papers in an adjacent box were " indicating 3,6 , or 8 for the day. This discrepancy I attributed to " the newly wrought wood. It has been said that ozone is destroyed " by the action of the gases produced during the decomposition of " animal and vegetable offal, and at one time I was inclined to " believe that the outbreaks of Cholera in the neighbourhood of " newly cleaned pits, manure heaps, cesspools, and the like, was the " result of the removal of ozone. Experiment, however, does not " support anything of the kind. I have often placed test papers in a " position exposed to the action of decaying matter, and I have never "s seen any difference between them and others placed beyond its " influence. The absence of ozone in low lying localities, where " Cholera has been the most prevalent and fatal, tends to prove that
" ozone is a purifying agent."

Ozone papers were freely distributed in the Cholera wards of St. Mary's Hospital; a trace only of discolouration was observed on September 17, 18, and 27, rather more on September 21, 22, and 30; but no trace was noticed at any other time.
Test papers were placed in the different wards of Camberwell workhouse, in the Choiera decks of the Bacchante, and over each deck of the Dreadnought hospital ship, in many instances in close vicinity to the patients, under the direction of Dr. Rooke, and no trace of discolouration was detected in a single instance in any of these situations. In fact, with the exception of the few cases noted at St. Mary's Hospital, every test paper has remained colourless which has been placed in stagnant air, whether enclosed or not.

Haze, fog, mist, were singly or together prevalent, in July, on the $11 \mathrm{th}, 21 \mathrm{st}, 25 \mathrm{th}, 26 \mathrm{th}, 29 \mathrm{th}$, and in August on the $13 \mathrm{th}, 16 \mathrm{th}, 17 \mathrm{th}$, 25th, $26 \mathrm{th}, 28 \mathrm{th}, 29 \mathrm{th}$, and 31 st. The beginning of September was ushered in with a dense blue mist; in the second week of this month the disease was at its height, and the blue mist was exchanged for a thick atmosphere of fog, which continued with little intermission to the end of the month, at low places prevailing both day and night; the only days exempt were those of the $16 \mathrm{th}, 17 \mathrm{th}$, and 20 th . During all this time the distant country was misty, objects at moderate distances were indistinct, and the sunshine was pale and watery; occasionally, however, the atmosphere was translucent, and at times, in London, the churches and buildings were defined with a remarkable clearness I have seldom witnessed. At the low-lying places the veil of fog and mist might be said never during the whole of September to have been dispersed.

The same kind of weather continucd in October, and mist, fog, or haze in or about London was recorded on the 1st, $2 \mathrm{~d}, 3 \mathrm{~d}, 4 \mathrm{th}, 9 \mathrm{th}$, 10th, 12th, 13th, 14th, 15th, $16 \mathrm{th}, 18 \mathrm{th}, 20 \mathrm{th}, 21 \mathrm{st}, 23 \mathrm{~d}, 24 \mathrm{th}, 25 \mathrm{th}$, 26 th, 27 th, 28 th, 31 st, or 19 days in November; and on 21 days in December similar notes were made.

Rain.

Tables XXXIX. to XLIII. show that there was a deficiency of rain in every month of the year, except in May and December. Table XXXIX. and remarks following show that from July 1 to November 25 , in all 136 days, not a drop of moisture fell on 93 days, and that the amount on 25 other days was very small, so that but little moisture fell on 118 days, including the outbreak, rise, and decline of Cholera. From August 24 to September 12 no rain at all fell, a period, it must be remembered, when the disease was at its worst. Rain to the depth of $0 \cdot 4$ inch fell in the week ending September 16. The rain-fall for the year was deficient by one-fourth of its average.

Drought.

A drought was felt in different parts of the country; the springs were low. The Rev. J. Slatter reports those about Oxford to be

7 feet below their ordinary level. Wells were generally low; many about the country were dried up, and the opportunity was taken very generally of clearing ponds and wells of long accumulated sediment.
I have now to the utmost of my means discussed the meteorological conditions of the period under the influence of Cholera. The results derived from the discussion are as decided, and perhaps more so, than might have been expected from an investigation the first of its kind ever instituted.
In the advent of another visitation of Cholera, a similarly conducted inquiry would tend to prove much which now is either matter of conjecture, or may be, of mere coincidence. With the view of discovering whether any similarity exists between the meteorology of the period just discussed and that of former years when Cholera was prevalent, I have instituted a brief meteorological inquiry with the years 1849 and 1832.

Atmospheric Phenomena in relation to Cholera in the Metropolitan Districts in the Years 1848 and 1849.
In the week ending October 7, 1848, there were 13 deaths from Cholera; this number increased to 65 and 62 in the weeks ending November 4 and 11 respectively, declined to 20 in the week ending December 2, and areraged 36 weekly from October 1 to the end of the jear.

The weather during this period was variable, and the changes of temperature were frequent. The month of November was cold; but those of October and December were warm; the fall of rain was about its average. The amount of electricity in the atmosphere was small, many days together passing without the instruments at Greenwich being at all affected.
The direction of the wind-
From October 1 to 11 - - was S.W.
" October 11 to $20 \quad-\quad$ - \quad N.
" October 20 to 31 - \quad - S.
" November 1 to $7-\quad-\quad$ S.W. and N.W.
" November 7 to 15 - - ", N.
" November 16 to December 9 - , S.W.
" December 9 to 15 - - " S.
" December 11 to 31 - - " N.N.E.
and the air was generally in motion.

S FROI
PRINCII
DIARRHOEA \square

Doathsdest NOVEMBE

$\frac{{ }^{\text {MAY }}}{}$

$\frac{\text { JULY }}{15}$

LOMDON N N N N N

HE DEATHS FROM CHOLERA AND DIARRHĖA ON EACH DAY OF THE YEAR 1854

The desation of the upper line indicates the reading of the Jraromrter
The dottid. Tine incticates the aserage daily Ternjerveluere; the clevation

The clevelion of the Lower black line indicutes the Temperature of the Thames water on ererg das. in the wour. Ins sale in degreas
 ings at the bottom of the Diagrum, indicute the monthly relathere proporkione of Fioy and Nist theorghont the vear

Table LX.-The Progress of the Epidenic in the Year 1849 is shown by the following Table, containing the Number of Deatus from Cholera registered in each Week.

1849. Week ending	Number of Deaths.	1849. Week ending	Number of Deaths.	Week ending	Number of Deaths.
January 6	61	May 5	4	September 1	1,663
13	94	12	3	8	2,026
20	62	19	5	15	1,682
27	45	26	5	22	839
February ${ }^{3}$	37	June $\quad 2$	2	October $\begin{array}{r}29 \\ 6\end{array}$	434
10	55		22	October $\begin{array}{r}6 \\ \\ \hline 13\end{array}$	288
17	49	16	42	$\begin{aligned} & 13 \\ & 20 \end{aligned}$	110
24	40	23	49	$\begin{aligned} & 20 \\ & 27 \end{aligned}$	41
March 3	35	July $\begin{array}{r}30 \\ 7\end{array}$	124	November 3	25
10	15	$\begin{array}{lr}\text { July } & 7 \\ & 14 \\ & \end{array}$	152 339	November 3 10	11
17 24 24	9 10	14 21 1	339 678	$\begin{aligned} & 10 \\ & 17 \end{aligned}$	8
24 31	10	28	783	24	2
	5	August 4	926	December 1	1
April 14	5	11	823	8	0
14 21	1	18	1,230	15	1
28	1	25	1,272	29 29	1

In this year as in 1854, the greatest mortality took place about the beginning of September, but was more fatal in the early months of the year. In the week ending January 6, the number of deaths was 61 , and on the following week as many as 94 . The epidemic was and and on the of Mar mortality subsided at end ond was small. The disease broke out again in June, and in the week ending June 30 rose to 124. This high rate of increase continued till the disease attained its maximum 2,026 in the week ending September 8 . The next week it began rapidly to decline, and decreased to 839 in the week ending September 22, and to 25 in the week ending October 27; after November 24 but few cases occurred.
The pressure of the atmosphere was above its average in January, and in February was remarkable. The average reading of the barometer from February 1st to the 18th, was $30 \cdot 56$ inches at the level of the sea ; on the 11th, the reading was as great as $30 \cdot 91$ inches a reading likely to occur but once in 30 years. The pressure continued ligh till about the middle of March. The mortality from Cholera had decreased from 94 in the second week of January, to 37 in the week ending February 3; had increased in the following week, and afterwards declined to 15 in the second week in March. The pressure was below its average from the middle of March, in April, and May, during the subsidence of the disease. In June Apm, ans acyin broke out, and the pressure was again high, and the disease again broke out, and the pressure Was againg ing, and remained high generally till September 8. The change of readings in August was small. On September 1 it was $29 \cdot 67$ inches,
increased slowly till the 7 th, when it was $30 \cdot 22$ inches, and turned
to decrease on the 8th. The mortality from June increased to its maximum 2,026 in the week ending September 8 . The reading of the barometer declined rapidly on the 9 th and 10 th ; was $29 \cdot 2$ inches almost without variation on the 11th, and still further decreased to $29 \cdot 05$ inches on the 12 th; it then increased to $30 \cdot 56$ inches by the 19 th, and decreased to $29 \cdot 78$ inches by the 27 th; the disease declining rapidly. The pressure of the atmosphere was below its average in September and December, and above in October and November.

Temperature of the Air.

Till the disease declined in the middle of March the temperature was high, with the exception of the first seven days in the year; from January 8 to March 17 the average daily excess of temperature was 6°; within this period the excess exceeded 12° on three days, 13° on 2 days, and 14° on 2 days. From March 18 to June 30 the temperature was low, averaging a defect of 3° daily, which shows the temperature to have been low during the subsidence of the disease, From July 1 to July 17 it was 3° in excess; from July 18 to August 5 was 2° in defect; from August 6 to August 12 was 6° in excess: a few days of rather cold weather followed; from August 20 toSeptember 10 the temperature was in excess, averaging 4° daily, and this period was distinguished by a thick and stagnant atmosphere, the weather, for the most part, being close and oppressive During this time the epidemic increased to its maximum, after which it rapidly and continuously declined. The temperature was for a few days together above, and a few days together below its average, till November 14, after which it was chiefly in defect to the end of the year.

Direction of the Wind.

January, February, and March - chiefly S.W. April, May, and June - - " N.E.

- S.W. and N.N.

July 10 to July 16 - - - N.E.
July 17 to July 31 - - - S.W.
" August 1 to August 12 - - - almost calm.
" August 12 to August 17 -
" August 18 to August 31 -
" September 1 to September 10
, September 10 to September 16
September 17 to September 30
October 1 to October 16

- S.W.
- - N.W.

September 17 to September 30

- Calm.

October 17 to November 18
November 19 to November 30
, December 1 to December 14

- N. and N.E.
- N. and

December 1 to December 1

- S.IW.
- N.E.

December 15 to December 31

- N.E. and S.E.
- S.W. and N.W

From August 1 to 12 the air was almost calm; from the 12 th to the 16 th it moved rather quickly, but from the 17 th to the end of the month it was frequently calm.

At the beginning of August the sky was frequently cloudy, but at times was clear. During the latter part of the month it was at times was clear. Durly always overcast, and the atmosphere was thick and hazy; at nearly always overcast, and the atmosphere was thick and heored beored by times so thick as to cause a great gloom, London being obscured by a dense fog-like mist, which overhung the city and rendered it
invisible from Greenwich. Rain fell on 3 days only, to the amount of $0 \cdot 4$ inch of water.
From September 1 to 10 the air was calm; on September 11 12 the whole mass of air at all places was in motion, and the hills at Highgate and Hampstead were seen from Greenwich. The epidemic at this time was at its height, but soon after rapidly declined. From the 15 th of September the air was in gentle motion.
During the months of August and September the motion of the ir was about one half its usual amount; but this remark is applicable only at places of considerable elevation. At low places the motion was much less, and at many times it occurred that a strong wind was blowing on Blackheath, when at the same time not the slightest movement of the air was perceptible near the Thames: this was particularly the case from August 19 to 24, on the 29 ih , and from September 1 to 10.
During the outbreak at the beginning of the year the direction of the wind was chiefly S.W., and during its subsidence was mostly N.E. For some time before, and when the mortality was at its height, the air was in a stagnant state at all low places, particularly near the river Thames. The disease began to decline on the whole mass of air becoming in motion.
The temperature of the Thames water attained to 60° on May 24, and declined below this reading on September 14. On June 5 and 6, at was 66°, declined to 61° by the 12 th, increased to 62° on the 21 st, and to 69° about the middle of July; declined to 62° by the middle of August; increased to 65° by the beginning of September, and declined to 60° by the 13th. It was shortly after the temperature of the water had attained to 60° that the disease broke out a second time, and only declined when the temperature of the water descended below this reading.

Fog，haze，and mist were not particularly noted till the month of August；they were frequent in August and September，and noticed on fifty－three days in the quarter occasionally strong，but for The electricity of the atmosphere was occas were unaffected．It was the most part，it was weak，and the instruments were unarectec． nearly always positive．Thunder storms Sheet lightning was seen on noticed on July 19， 2
August 7,11 ，and 20 ．
This closes my investigation into the similar to that of 1854.
which exhibits an outline of facts
Atmospheric Phenomena in relation to Cholera
My discussion of 1832 will be yet more brief，as my data is com－ paratively meagre，and the exact progress of the disease is not pecorded．The office of the Registrar General has since been founded．

砋号旁	瓦	\bigcirc
号		
	｜ccccccccccccc	$\stackrel{91}{91}$
		$\stackrel{\square}{\square}$
	－ 0 ¢	－
		$\stackrel{\infty}{\stackrel{\circ}{6}}$
		\％
	－ 0 凩	$\stackrel{\rightharpoonup}{9}$
		$\stackrel{00}{\circ}+$
		遃
		＇ ＇ 费 宸

tal number of deaths in London from Choleru in 1832 was in 5,275 , which is less by far than the aggregate nidemic was as follows: succeeding visitations. Middle of February, and by the middle of May -It broke out in the middle It then subsided, and broke out again in the deaths numbered 994. August, and by the end of October the June, was most fatal in August, and by it then declined suddenly, number of deaths amounted to and in November and December the number of deaths was 15 only.

Pressure of the Atmosphere.

On January 1st the reading of the barometer was $29 \cdot 40$ inches, Ohich increased to $30 \cdot 36$ inches by the 15 th, and was generally above which increaseet on the 26 th, till the end of the month. The reading 30 inches, except on the 2 abruary 1, to $29 \cdot 26$ inches on the 2d, but was declined rapidy on 30.60 inches by the 10th. The disease seems at this time as high as $30 \cdot 60$ inches by the at places where it had previously been, to have increased in intensity at places where pressure continued high and to have broken out at fresh places. Fh. In March the readings for the most part throughout the mon. 30.40 inches on the 10 th. varied from $29 \cdot 40$ inches, on the 64 whes, which was the highest in On April 4 the reading was 30.64 inches, whend was the lowest in the year. On April 30 it was $29 \cdot 36$ inches, and was the lowest in the month. In the early part of 10 th , and 29.53 inches on the 31 st. extremes were $30 \cdot 45$ inch March, April, and the first half of May, and The pressure was high in minimum about the middle of May. In the disease declined to its mint the beginning of the month, and high June the readings were low at the beginnisg inches on the 6th, and towards the end; the extremes were 2951 wis this month In 30.50 inches on the 30th. The disease re-appeared this wore 29.78 July the changes of reading were small; the extremes were for the inches on 7 th, and $30 \cdot 47$ inches on the 15 the reading on the 2 d was whole month was in excess. In Aughes on the 11 th, decreased to 29.89 inches, increased to 30.50 inche to 30.13 inches on the 20th, 29.83 inches on the 19th, increased to esed to 30.13 inches on the decreased to $29 \cdot 20$ inches by the 22 d , increased to 30 . 3 was the lowest 24th, and decreased to $21 \cdot 29$ inches by the 28th, which was the lowest reading in the year. The disease at this time was at its height and its turning to decline seems in some measure connected with the low reading of the barometer at the end of the mon to 29.84 inches tember 4 , the reading was $30 \cdot 34$ inches, the 12 th, and was generally by the 10 th ; increased to 3040 . . about 30 inches during the remainder of the monarkable in those of in October were high, but there was nothing remarkable in those of November and December. The pressure of the atmosphere ans
above its average in every month of the year, excepting June and August.

Temperature of the Air.
The temperature was below its average in every month, excepting in April, October, and December, when it was slightly in excess. The spring was coid and regetation backward, and it was noticed The spring was coid and regetation backward, and towards the end
of May. The summer was cold, and the temperature never reached so high as 80°. The diurnal range of temperature was small in every
month.

Clouds.-The sky was for the most part covered with cloud, and there were very few cloudless days in the year; at the same time the number of wholly overcast days was much less than usual. The clearest periods were in April and September, when the sky was less than one-half covered with cloud; the amount of cloud in all the remaining months covered something less than three-fourths of
the whole sky. the whole sky.
fourth of the average the year was 17.6 inches, being in deficit oneof the average
Fog was noticed on January 20, 21; February 22, 23, 25, 27 ;
March 11; October 22; and D March 11; October 22; and December 27 and 28
Haze was recorded on March 27, September 4, and October 20.
day there was a heavy thume noted on June 7, August 2; on this day there was a heavy thunder storm; August 3, November 29,
and December 2
Hail fell on

Direction and estimated Strength of the Wind

Jan. 1 to Jan. 10, N.E. Estimated strength 0.6 Calm on 3 days,

Jan. 10 to Feb. 10, S.W.		1.0			
Feb. 11 to Feb. 29, N.E.	"	1.0 0.5	"	7 8	"
Mar. 8 to Mar. ${ }^{\text {Mar }}$, S.		1.8	"	8	",
Mar. 12 to Mar. 27, S.W.		$0 \cdot 4$	"	2	
Mar. 29 to Apr. 14, N.E.	"	$1 \cdot 7$	"	0	
Apr. 16 to Apr. 21, S.W.	:	$1 \cdot 3$	"	1	
Apr. 25 to Apr. 30, N.E.		$1 \cdot 4$	"	0	
May 1 to June 6, N.E. and N.W.	,iefly	$1 \cdot 4$ $0 \cdot 9$		0	
June 26 to July 25, S.W. cliefly	"	$1 \cdot 0$			
July 3 to July 17, W. S.W	"	$0 \cdot 5$		1	
July 18 to Aug. 2, N.		$1 \cdot 2$	"	0	
Aug. 3 to Sept. 3, S.W.	"	$1 \cdot 1$	"	0	
Sept. 4 to Sept. 7, N.E.	\%	$1 \cdot 1$	"	3	
Sept. 8 to Sept. 19, S.W.	"	1.6 $1 \cdot 1$	"	1 ,	
Sept. 20 to Sept. 24, S.E. and N.	",	$\stackrel{1}{0} 1$	",	1 1,	
Sept. 25 to Sept. 29, calm	",	0.7 0.0	",		
Oct. 19 to Oct. 28, N.E.	"	$2 \cdot 0$	"		
Oct. 29 to Nov. 4, S.W.	"	0.8	"	1 "	
Nov. 5 to Nov. 8, N.	"	1.	"		
Nov. 9 to Nov. 27, S.E.		$1 \cdot 6$	"	0 \%	
Nov. 28 to Dec. 27, S.W.	",	1.9 1.2	"	${ }^{3}$ "	
Dec. 27 to Dec. 31, N.E. and S.E.		${ }_{0} \cdot 9$			

The direction of the wind during the year was mostly N.E. and S.W. The numbers showing the estimated strength can be considered only as relative; from them it seems that the air was seldom in a calm state; the longest period noted as calm was from September 25 to September 29, and was most freely in motion during the first 18 days in October. During the year 53 days were noticed as being calm.

The meteorological phenomena in relation to Cholera in the year The furnish us with the means of comparison with the phenomena 1840 ad 1854, in relation to the general pressure of of 1849 and sphere, temperature of the air, delectrical disturbances, but do not clearness of sky, and frequer
furnish other particulars.

Those of 1849 and 1854 furnish the means of satisfactorily comparing the general character of the two seasons.
No observations were made at the central Metropolitan stations in the years 1832 and 1849, and the meteorological phenomena of the outlying stations only admit of strict comparison.
In the year 1832 the barometer reading was high; that of the號 rage in the year. In the summer, when the disease was raging for the first time in England, the barometer was high; the temperature below the average; the quantity of rain small; the direction of the wind N.E. and S.W.; the air not in much motion; the sky partially overcast, and there was a seeming deficiency of electricity.
In the year 1849 the pressure of the atmosphere was great; the temperature high; the sky overcast; he and the velocity of the air and S.W.; the atmosphere misty and thick; the velocity of the airh less than one-half its average. When the epidemic was at its height a calm prevailed, with a misty thick atmosphere at all places, which a calm presly more dense and torpid in low places; the weather was was sensibly more dense and no rain; temperature of the Thames dull, thick, and opprestive electricity; no electrical disturbances.
In the year 1854 the pressure of the atmosphere was great; the temrature gencrally high; sky overcast; direction of the wind N.E. S.W., and the vilocity of the air was less by one-half than its average for some time before; and at the time of the greatest norality from Cholera, the harometer reading was remarkably high, and ality from Cholera, the barometer reading wive atmosphere, though at he temperature above its aviled; weak positive electricity; no rain. In low places a dense mist and stagnant air, with a temperature in In low places a dure of the Thames water high; a high night London excess; temperature of daily range; an absence of ozone, and no electemperature; a small daily range; an absence of ozone, and no elo tricity.
The three epidemics were attended with a particular state of atmophere, characterized by a prevalent mist, thin in high places, dense in low. During the height of the epidemic, in all cases, the reading of the barometer was remarkably high, and the atmosphere thick. In 1849 and 1854 , the temperature was above its average, and total absence of rain, and a stillness of air amounting almost to calm, accompanied the progress of the disease on each occasion. In places near the river, the night temperatures were high, with small diurnal range, a dense torpid mist, and air charged with the many inpurities arising from the exhalations of the river and adjoining marshes, a deficiency of electricity, and, as shown in 1854, a total absence of
ozone, most probably destroyed by the decomposition of the organic matter with which the air in these situations is strongly charged.
In 1849 and 1854, the first decline of the disease was marked by a decrease in the readings of the barometer, and in the temperature of air and water; the air, which previously for a long time had continued calm, was succeeded by a strong S.W. wind, which soon dissipated the former stagnant and poisonous atmosphere. In both periods at the end of September, the temperature of the Thames fell below 60°, but in 1854 the barometer agrain increased, the air became again stagnant, and the decline of the disease was considerably checked. It continued, however, gradually to subside, although the months of November and December were nearly as misty as that of September. By the close of the year diarrhoaa and Cholera had subsided, but a high rate of mortality still continued.
The co existence of Cholera with coincident meteorological phenomena is, to say the least of it, remarkable, so is the stagnant atmosphere prevalent during the time of Cholera in each of the three periods, and which would seem to be a necessary condition to the activity of the disease.
The inimical nature of the influence it exercises upon the public health, I regard as intimatcly connected with the state of the water and the marshes, which in the preceding pages are shown to be large evaporating surfaces for every description of poisonous exhalations Impure water and impure air are inseparable, for the impurities of the former will be concentrated into the surrounding atmosphere, and there remain, unless rapidly dispersed under favourable atmospheric conditions.

The agency of the river in fostering diseases is confirmed by the history of Cholera just traced, and which we find to have been most fatal in low situations, and in London in those places on the south side of the Thames which afford an undisturbed lodgment for the reception of the air charged with the poisonous elements from evaporation and exlalation. The effect of a gentle wind is to float this atmosphere to cnclosed spots where its malignity becomes concentrated.

This closes a discussion I have endeavoured to make as claborate as the means and time at my disposal have permitted.
I cannot consider the birth of Cholera attributable solely to atmospheric influences; at the same time, the preceding pages have shown, beyond a doubt, the activity of London climate in accelerating the disease, thereby showing its progress to be intimately connected with meteorological influences.

What other causes are combined with those of meteorclogy to aid the progress of this formidable epidemic, have yet to be ascertained.

Just as this Report was printed, I received a copy of the Report of the Sanitary Commission on epidemic yellow fever in New Orleans. That part on the relation of meteorological phenomena to cholera

No. II.

Report on the Examination of certain Atmospheres during the Epidemic of Cholera. By Dr. R. D. Thomson.

The facts with which we are acquainted in reference to the condition of the atmosphere, indicate that its main constituents, oxygen and nitrogen, are very stable in their proportions. The mean of experiments made on the composition of the air in various parts of the globe shows that the amount of oxygen by measurement is approximately 21 per cent., and that of the nitrogen 79 ; but in certain cases within the tropics, the conditions of which have not yet been thoroughly investigated, the quantity of oxygen falls to $20 \cdot 3$ per cent. The influence of this diminution would be slightly to lower the weight of a given bulk of air, a result the reverse of what it is understood was observed during the first introduction of cholera into this country (Prout). No physiological facts seem to indicate that such a slight departure from the normal state of the air would be attended in the human organization with a disense possessing a regular type, nor even would such a consequence be liable to occur during greater irregularities in the atmospheric equilibrium in this direction. The agency of carbonic acid in inducing disease can scarcely be quoted as likely to occur on a great scale in nature, since the diffusive power of this and other gases, so sagaciously discovered by Priestley, and applied by him to explain the respiratory process, always tends to preclude its concentration, except under a limited number of peculiar circumstances. The accumulation of ammonia, another recognized normal constituent of atmospheric air, from the insignificance of its possible amount, could scarcely be quoted as a likely source of disease, however much it might be valued as an indication of the collateral existence of other bodies of organic origin in the air. If this reasoning be admitted, we of organic origin in the air. If this reasoning be admitted, we
should be compelled to look for the source of endemic diseases to the rapour of the atmosphere or to organic bodies, either disseminated through the air by the agency of heat or eraporation from inorganic or organic matter placed on the earth's surface. Intermittent fever or ague is one of those diseases which has been thoroughly ascertained to be endemic, and to be dependent on terrestrial causes of a peculiar character. Whether the cause be the nature of the atmosphere in which the human system is immersed or the introduction of a poison into the circulation, is a question open to discussion. The fact that removal from the marshy or intermittent atmosphere to an elerated and dry mountain summit or table land obviates or speedily terminates the morbid accession, affords support to the view which would ascribe the occurrence of the disease to immersion in an atmosphere nearly saturated with vapour, and the consequent inter-

