を得た。この傾向は、(a)血中PCB濃度、(b)パターン、(c)摂取量PCBの種類および期間、等の因子との関係は、現在のところ見出されなかった。また、一般人など他の群も、ほぼ同様の傾向を示していた。さらに経過観察を続け、血中PCB成分と代謝速度およびそれに及ぼす各因子との関係を検討していきたい。

IV KC−300取扱い者の血液中PCBパターンの動物実験による再現

吉田精作 畑師谷積 渡辺功
桑原克義 田中涼一 棟本隆
国田信治

（大阪府立公衆衛生研究所）

KC−300取扱い者の血中PCBパターンは、一般人ものとは異なり、また、油症患者の血中にはすでに残留していない水酸化物が多く残存し、特徴あるパターンを示している。このパターンを再現するため、KC−300をラットに投与し、その組織中PCBパターンを検討した。

【方法】SD系ラット（雄5週令）をA、B各8匹に分け、A群には0.2mg/kg/日（PCB取扱い者の推定一日摂取量）、B群には20mg/kg/日を5日間連続経口投与した。投与後1、4、10、22日目に2匹ずつ血液、肝臓、脂肪を採取した。試料はアルカリ分解後ヘキサン抽出、フロリジルカラムで精製し、ガスクロマトグラム（5m Apiezon-L）により解析した。

【結果】残留PCB濃度はA、Bとも脂肪において最も高く、肝臓で1/10、血液でさらにその1/10の値を示した。また濃度は経日に減少した。KC−300は3塩化物が主成分で、その特徴は低塩化物で一般人に残留しているピークk、9が多く、高塩化物の中ではピーク25、28が他のPCBシリーズに比べ多いことである。B群のパターンは（図1）、投与終了後1日目ではKC−300の特徴をよく示し低塩化物が多く残存している。しかしこのパターンは経日に変化して行き、ピークk、9は速やかに、ピーク25、28も徐々に減少して行く。さらに日が経つと油症患者のパターンに近づくと考えられる。A群のパターンは（図2）、22日をすぎても大きな変化はなく、ピークk、9が残留PCBの約7割を占めKC−300と類似したパターンを示した。低濃度投与では摂取PCBの特徴をよく表わしたパターンが経時的に変化なく維持されて行くと考えられる。図3はKC−300を9年間取扱った人の取扱いをやめた4年後の血中パターンである。その特徴はピークk、9が多く残存し、ピーク25、28も多いことである。図2と図3を比較するとわかるように、KC−300取扱い者のパターンがラットのパターンに再現されている。図4はパターンの特徴をCB％で図示したものである。

KC−300取扱い者のパターンが一般人や油症患者のものと異なることがよくわかる。また取扱いをやめて4年後のパターンがKC−300を低濃度投与したラットのパターンと類似したことは、KC−300取扱い者のPCB濃度は一般人の約10倍と高い値を示しているが、摂取したPCBの量は、そのパターンが大きく変化するほどの量ではなく、またこのパターンが大きな変化なく持続して行くことを示すものである。
図1 脂肪中のPCBガスクロマトグラム—B群—
a: 投与終了後1日目
b: 同4日目
c: 同10日目
d: 同22日目
図2 脂肪中のP C Bガスクロマトグラム- A群-

a : 投与終了後1日目
b : 同22日目
図3 KC-300取扱い者の血中PCBガスクロマトグラム

図4 KC-300投与A群ラット、KC-300取扱者、一般人及び油症患者におけるCB%パターンの比較
取扱い者の血中 パターンは、一般人のものとは異なり、また、油症患者の血中にはすでに残留していない低塩素化物が多く残留し、特徴あるパターンを示している。このパターンを再現するため、をラットに投与し、その組織中 パターンを検討した。