クレチン症マス・スクリーニングの研究

大阪大学医学部臨床検査診断学

宮井 潔

水田 仁士

大阪大学医学部小児科

藪内 百治

大阪市立小児保健センター

野瀬 宰

砂子療育園

鶴原 常雄大浦 敏明

1. エンザイムイムノアッセイによる濾紙血液 TSH 測定用自動分析装置の開発

昨年度報告した一段階サンドイッチ法による TSH エンザイムイムノアッセイ (EIA) の半自動分析装置を開発した。すなわち抗 TSH 抗体を固相化した試験管に,血液沪紙 3 mm径 2 枚と,緩衝液 150 μ l, β -D-ガラクトシダーゼ標識抗 TSH (GAL-抗 TSH)100 μ l を入れ,25℃一夜インキュベート後,洗浄液を入れ,ラック毎全体を転倒,内容除去し,洗浄を 3 回反復する。この試験管を,自動分析器にかけると,あとは自動的に基質 (4-methylumbelliferyl- β -D-galacto pyranoside) が分注され,37℃60分インキュベート後,停止液が入り,吸引して螢光強度が測定される。さらに,接続しているコンピューターにより,各サンプルの測定値が読みとられ,その分布がプロットされるようになっている。図はその一例である。いずれにしても本法は,多数検体を簡単に処理することができ,今後のクレチン症マス・スクリーニングに有用と考えられる。

2. 大阪市におけるマス・スクリーニング結果

1975年11月から1981年12月まで TSH-RIA 法により一般新生児 212,700 人をスクリーニングし,220 人(1/967)を呼出し精査した結果異常児59例(1/3,600)[内クレチン症38例(1/5,600), 一過性高 TSH 血症13例,未確定8例]を見出した。

3. 母乳中甲状腺ホルモン測定の検討

母乳中甲状腺ホルモン測定に関しては、strbak、中島、佐藤らの報告があるがなお意見の一致をみない。そこで母乳のエタノール抽出物につき種々な方法で T₄と T₃の測定を試みた。

- a) T_4 : CPBA 法では方法によってその測定値は大きく異なる $(3.2 \sim 49.9 \mu g/dl)$ 。しかも T_4 添加回収率も $93 \sim 323$ %と異なり,希釈実験でも上方に凸の曲線となった。一方 RIA ではいずれの 方法でも感度以下であり,回収率は $121 \sim 158$ %であった。したがってこれらの方法では母乳中 T_4 は正しく測定できないものと思われる。
- b) T_3 : 二抗体 RIA で回収率 $102\pm22\%$,希釈曲線もほぼ標準曲線と平行するため測定可能 と考えられた。その測定値は $26\sim112\,\mathrm{ng/dl}$,一日分泌量 $70\sim900\,\mathrm{ng}$ と算出されたが,血中 T_3 値 とは相関しなかった。

c)母乳栄養児と人工栄養児の下垂体甲状腺機能:T₄, T₃, TSH いずれも両群に有意差がなかった。以上の結果から、母乳中甲状腺ホルモンは、たとえ存在していても、マス・スクリーニングに影響を及ぼす程ではないと考えられる。

文 献

- 1) Miyai, K. Ishibashi, K. and Kawashima, M.: Two site immunoenzymometric assay for thyrotropin in dried blood samples on filter paper. Clin. Chem. 27: 1421. 1981.
- 2)水田仁士,市原清志,網野信行,谷沢修,宮井潔:人乳中サイロキシン測定-Competitive radio assay における特異性の検討 日本小児科学会誌 85:604.1981.

20000000000000000000000000000000000000	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.00	6.50 6.50 6.50 7.00 7.00 7.50 7	;	10.50 11.10 11.10 11.10 11.50 11.50 12.	12.00 12.00 12.50 12.50 12.50 13.50 14.00	.50 15.00 15.00 17.00 17.00 17.00 17.00 19.00 20.00	acetacescaptucescapamentescapamentescapatementescapatementescaptescaptescapt 00°5	equestant description of the second s	;	00 25.00 188888	1	:	1 00° tra 11 00°	:	: :	EI 00.19 1 00.	: ;	: :	
--	---	---	------	------------------------------------	------	-------------------------------	------	---	------	---------------------------------	---	---	---	---	---	--	---	-------------------	---	---	------------------	---	-----	----------------	-----	-----	--

検索用テキスト OCR(光学的文字認識)ソフト使用 論文の一部ですが、認識率の関係で誤字が含まれる場合があります

1. エンザイムイム ノァッセイによる濾紙血液 TSH 測定用自動分析装置の開発

昨年度報告した一段階サンドイッチ法による TSH エンザイムイムノアッセイ(EIA)の半自動分析装置を開発した。すなわち抗 TSH 抗体を固相化した試験管に,血液ろ紙 3 mm径 2 枚と,緩衝液 150 μ 1, -D-ガラクトシダーゼ標識抗 TSH(GAL-抗 TSH)100 μ I を入れ,25 一夜インキュベート後,洗浄液を入れ,ラック毎全体を転倒,内容除去し,洗浄を 3 回反復する。この試験管を,自動分析器にかけると,あとは自動的に基質 (4-methylumbelliferyl--D-galacto pyranoside)が分注され,37 60 分インキュベート後,停止液が入り,吸引して螢光強度が測定される。 さらに,接続しているコンピューターにより,各サンプルの測定値が読みとられ,その分布がプロットされるようになっている。 図はその一例である。 いずれにしても本法は,多数検体を簡単に処理することができ,今後のクレチン症マス・スクリーニングに有用と考えられる。